Abstract
Recent advancements in the production, modification, and cellular delivery of RNA molecules facilitated the expansion of RNA-based therapeutics. The increasing understanding of RNA biology initiated a corresponding growth in RNA therapeutics. In this review, the general concepts of five classes of RNA-based therapeutics, including RNA interference-based therapies, antisense oligonucleotides, small activating RNA therapies, circular RNA therapies, and messenger RNA-based therapeutics, will be discussed. Moreover, we also provide an overview of RNA-based therapeutics that have already received regulatory approval or are currently being evaluated in clinical trials, along with challenges faced by these technologies. RNA-based drugs demonstrated positive clinical trial results and have the ability to address previously “undruggable” targets, which delivers great promise as a disruptive therapeutic technology to fulfill its full clinical potentiality.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Aghajanian, H., Kimura, T., Rurik, J.G., Hancock, A.S., Leibowitz, M.S., Li, L., Scholler, J., Monslow, J., Lo, A., Han, W., et al. (2019). Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433.
Ahmadzada, T., Reid, G., and McKenzie, D.R. (2018). Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10, 69–86.
Alshaer, W., Zureigat, H., Al Karaki, A., Al-Kadash, A., Gharaibeh, L., Hatmal, M.M., Aljabali, A.A.A., and Awidi, A. (2021). siRNA: mechanism of action, challenges, and therapeutic approaches. Eur J Pharmacol 905, 174178.
Asbeutah, A.A.A., Asbeutah, S.A., and Abu-Assi, M.A. (2020). A meta-analysis of cardiovascular outcomes in patients with hypercholesterolemia treated with inclisiran. Am J Cardiol 128, 218–219.
Barquera, S., Pedroza-Tobías, A., Medina, C., Hernández-Barrera, L., Bibbins-Domingo, K., Lozano, R., and Moran, A.E. (2015). Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res 46, 328–338.
Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920.
Beck, J.D., Reidenbach, D., Salomon, N., Sahin, U., Türeci, Ö., Vormehr, M., and Kranz, L.M. (2021). mRNA therapeutics in cancer immunotherapy. Mol Cancer 20, 69.
Brenner, S., Jacob, F., and Meselson, M. (1961). An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576–581.
Cafri, G., Gartner, J.J., Zaks, T., Hopson, K., Levin, N., Paria, B.C., Parkhurst, M.R., Yossef, R., Lowery, F.J., Jafferji, M.S., et al. (2020). mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest 130, 5976–5988.
Chakraborty, C., Sharma, A.R., Sharma, G., and Lee, S.S. (2021). Therapeutic advances of miRNAs: a preclinical and clinical update. J Adv Res 28, 127–138.
Chaudhary, N., Weissman, D., and Whitehead, K.A. (2021). mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov 20, 817–838.
Chen, C.Y., Tran, D.M., Cavedon, A., Cai, X., Rajendran, R., Lyle, M.J., Martini, P.G.V., and Miao, C.H. (2020). Treatment of hemophilia a using factor VIII messenger RNA lipid nanoparticles. Mol Ther-Nucl Acids 20, 534–544.
Chen, L.L., and Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biol 12, 381–388.
Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. (1977). An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8.
Corbett, K.S., Edwards, D.K., Leist, S.R., Abiona, O.M., Boyoglu-Barnum, S., Gillespie, R.A., Himansu, S., Schäfer, A., Ziwawo, C.T., DiPiazza, A.T., et al. (2020). SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 586, 567–571.
Crooke, S.T., Baker, B.F., Crooke, R.M., and Liang, X.H. (2021). Antisense technology: an overview and prospectus. Nat Rev Drug Discov 20, 427–453.
Dagan, N., Barda, N., Kepten, E., Miron, O., Perchik, S., Katz, M.A., Hernán, M.A., Lipsitch, M., Reis, B., and Balicer, R.D. (2021). BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384, 1412–1423.
Damase, T.R., Sukhovershin, R., Boada, C., Taraballi, F., Pettigrew, R.I., and Cooke, J.P. (2021). The limitless future of RNA therapeutics. Front Bioeng Biotechnol 9.
de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. (2007). Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443–453.
Dhuri, K., Bechtold, C., Quijano, E., Pham, H., Gupta, A., Vikram, A., and Bahal, R. (2020). Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9, 2004.
Feng, R., Patil, S., Zhao, X., Miao, Z., and Qian, A. (2021). RNA therapeutics-research and clinical advancements. Front Mol Biosci 8. Fernandez-Prado, R., Perez-Gomez, M.V., and Ortiz, A. (2020). Pelacarsen for lowering lipoprotein(a): implications for patients with chronic kidney disease. Clin Kidney J 13, 753–757.
Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.
Fischer, J.W., Busa, V.F., Shao, Y., and Leung, A.K.L. (2020). Structure-mediated RNA decay by UPF1 and G3BP1. Mol Cell 78, 70–84.e6.
Gagliardi, M., and Ashizawa, A.T. (2021). The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines 9, 433.
Gallant-Behm, C.L., Piper, J., Lynch, J.M., Seto, A.G., Hong, S.J., Mustoe, T.A., Maari, C., Pestano, L.A., Dalby, C.M., Jackson, A.L., et al. (2019). A microRNA-29 mimic (Remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J Investig Dermatol 139, 1073–1081.
Ghanbarian, H., Aghamiri, S., Eftekhary, M., Wagner, N., and Wagner, K. D. (2021). Small activating RNAs: towards the development of new therapeutic agents and clinical treatments. Cells 10, 591.
Gillmore, J.D., Gane, E., Taubel, J., Kao, J., Fontana, M., Maitland, M.L., Seitzer, J., O’Connell, D., Walsh, K.R., Wood, K., et al. (2021). CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N Engl J Med 385, 493–502.
Gomez, I.G., MacKenna, D.A., Johnson, B.G., Kaimal, V., Roach, A.M., Ren, S., Nakagawa, N., Xin, C., Newitt, R., Pandya, S., et al. (2015). Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 125, 141–156.
Granot, Y., and Peer, D. (2017). Delivering the right message: challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—an innate immune system standpoint. Semin Immunol 34, 68–77.
Gros, F., Hiatt, H., Gilbert, W., Kurland, C.G., Risebrough, R.W., and Watson, J.D. (1961). Unstable ribonucleic acid revealed by pulse labelling of Escherichia coli. Nature 190, 581–585.
Hajj, K.A., and Whitehead, K.A. (2017). Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater 2, 17056.
Hanna, J., Hossain, G.S., and Kocerha, J. (2019). The potential for microRNA therapeutics and clinical research. Front Genet 10.
Hansen, T.B., Wiklund, E.D., Bramsen, J.B., Villadsen, S.B., Statham, A. L., Clark, S.J., and Kjems, J. (2011). miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J 30, 4414–4422.
Haranaka, M., Baber, J., Ogama, Y., Yamaji, M., Aizawa, M., Kogawara, O., Scully, I., Lagkadinou, E., Türeci, Ö., Şahin, U., et al. (2021). A randomized study to evaluate safety and immunogenicity of the BNT162b2 COVID-19 vaccine in healthy Japanese adults. Nat Commun 12, 7105.
He, A.T., Liu, J., Li, F., and Yang, B.B. (2021). Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Sig Transduct Target Ther 6, 185.
Hou, X., Zaks, T., Langer, R., and Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nat Rev Mater 6, 1078–1094.
Hovingh, G.K., Lepor, N.E., Kallend, D., Stoekenbroek, R.M., Wijngaard, P.L.J., and Raal, F.J. (2020). Inclisiran durably lowers low-density lipoprotein cholesterol and proprotein convertase subtilisin/kexin type 9 expression in homozygous familial hypercholesterolemia. Circulation 141, 1829–1831.
Huang, V., Qin, Y., Wang, J., Wang, X., Place, R.F., Lin, G., Lue, T.F., and Li, L.C. (2010). RNAa is conserved in mammalian cells. PLoS ONE 5, e8848.
Janowski, B.A., Younger, S.T., Hardy, D.B., Ram, R., Huffman, K.E., and Corey, D.R. (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol 3, 166–173.
Jeck, W.R., and Sharpless, N.E. (2014). Detecting and characterizing circular RNAs. Nat Biotechnol 32, 453–461.
Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., Marzluff, W.F., and Sharpless, N.E. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157.
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.
Khan, S.A., Naz, A., Qamar Masood, M., and Shah, R. (2020). Meta-analysis of inclisiran for the treatment of hypercholesterolemia. Am J Cardiol 134, 69–73.
Khehra, N., Padda, I., Jaferi, U., Atwal, H., Narain, S., and Parmar, M.S. (2021). Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization. AAPS PharmSciTech 22, 172.
Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20, 675–691.
Kingwell, K. (2021). Small activating RNAs lead the charge to turn up gene expression. Nat Rev Drug Discov 20, 573–574.
Kole, R., Krainer, A.R., and Altman, S. (2012). RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11, 125–140.
Kowalski, P.S., Rudra, A., Miao, L., and Anderson, D.G. (2019). Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther 27, 710–728.
Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., and Cech, T.R. (1982). Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell 31, 147–157.
Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with “antagomirs”. Nature 438, 685–689.
Kyte, J.A., Aamdal, S., Dueland, S., Sæbøe-Larsen, S., Inderberg, E.M., Madsbu, U.E., Skovlund, E., Gaudernack, G., and Kvalheim, G. (2016). Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells. OncoImmunology 5, e1232237.
Laganà, A., Veneziano, D., Russo, F., Pulvirenti, A., Giugno, R., Croce, C. M., and Ferro, A. (2014). Computational design of artificial RNA molecules for gene regulation. Methods Mol Biol, 393–412.
Lam, J.K.W., Chow, M.Y.T., Zhang, Y., and Leung, S.W.S. (2015). siRNA versus miRNA as therapeutics for gene silencing. Mol Ther-Nucl Acids 4, e252.
Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
Li, L.C., Okino, S.T., Zhao, H., Pookot, D., Place, R.F., Urakami, S., Enokida, H., and Dahiya, R. (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA 103, 17337–17342.
Li, X., Zhang, J.L., Lei, Y.N., Liu, X.Q., Xue, W., Zhang, Y., Nan, F., Gao, X., Zhang, J., Wei, J., et al. (2021). Linking circular intronic RNA degradation and function in transcription by RNase H1. Sci China Life Sci 64, 1795–1809.
Lieberman, J. (2018). Tapping the RNA world for therapeutics. Nat Struct Mol Biol 25, 357–364.
Linares-Fernández, S., Lacroix, C., Exposito, J.Y., and Verrier, B. (2020). Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol Med 26, 311–323.
Litke, J.L., and Jaffrey, S.R. (2019). Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat Biotechnol 37, 667–675.
Liu, C.X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.K., Xue, W., Cui, Y., Dong, K., Ding, H., et al. (2019). Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21.
Maruggi, G., Zhang, C., Li, J., Ulmer, J.B., and Yu, D. (2019). mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther 27, 757–772.
Nemet, I., Kliker, L., Lustig, Y., Zuckerman, N., Erster, O., Cohen, C., Kreiss, Y., Alroy-Preis, S., Regev-Yochay, G., Mendelson, E., et al. (2022). Third BNT162b2 vaccination neutralization of SARS-CoV-2 omicron infection. N Engl J Med 386, 492–494.
Otoukesh, B., Abbasi, M., Gorgani, H.O.L., Farahini, H., Moghtadaei, M., Boddouhi, B., Kaghazian, P., Hosseinzadeh, S., and Alaee, A. (2020). MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 20, 254.
Pardi, N., Hogan, M.J., Porter, F.W., and Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov 17, 261–279.
Pardi, N., Hogan, M.J., and Weissman, D. (2020). Recent advances in mRNA vaccine technology. Curr Opin Immunol 65, 14–20.
Patrick Walton, S., Wu, M., Gredell, J.A., and Chan, C. (2010). Designing highly active siRNAs for therapeutic applications. FEBS J 277, 4806–4813.
Perez, C.R., and De Palma, M. (2019). Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 10, 5408.
Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Pérez Marc, G., Moreira, E.D., Zerbini, C., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 383, 2603–2615.
Portnoy, V., Lin, S.H.S., Li, K.H., Burlingame, A., Hu, Z.H., Li, H., and Li, L.C. (2016). saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Cell Res 26, 320–335.
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., and Lim, W.A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183.
Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., Wu, Z., Tang, H., Zhang, X., Tian, F., et al. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e16.
Qu, L., Yi, Z., Zhu, S., Wang, C., Cao, Z., Zhou, Z., Yuan, P., Yu, Y., Tian, F., Liu, Z., et al. (2019). Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat Biotechnol 37, 1059–1069.
Raal, F.J., Kallend, D., Ray, K.K., Turner, T., Koenig, W., Wright, R.S., Wijngaard, P.L.J., Curcio, D., Jaros, M.J., Leiter, L.A., et al. (2020). Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med 382, 1520–1530.
Ramaswamy, S., Tonnu, N., Tachikawa, K., Limphong, P., Vega, J.B., Karmali, P.P., Chivukula, P., and Verma, I.M. (2017). Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc Natl Acad Sci USA 114.
Ray, K.K., Landmesser, U., Leiter, L.A., Kallend, D., Dufour, R., Karakas, M., Hall, T., Troquay, R.P.T., Turner, T., Visseren, F.L.J., et al. (2017). Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med 376, 1430–1440.
Ray, K.K., Wright, R.S., Kallend, D., Koenig, W., Leiter, L.A., Raal, F.J., Bisch, J.A., Richardson, T., Jaros, M., Wijngaard, P.L.J., et al. (2020). Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med 382, 1507–1519.
Reebye, V., Huang, K.W., Lin, V., Jarvis, S., Cutilas, P., Dorman, S., Ciriello, S., Andrikakou, P., Voutila, J., Saetrom, P., et al. (2018). Gene activation of CEBPA using saRNA: preclinical studies of the first in human saRNA drug candidate for liver cancer. Oncogene 37, 3216–3228.
Ruotsalainen, A.K., Mäkinen, P., and Ylä-Herttuala, S. (2021). Novel RNAi-based therapies for atherosclerosis. Curr Atheroscler Rep 23, 45.
Rupaimoole, R., and Slack, F.J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16, 203–222.
Rurik, J.G., Tombácz, I., Yadegari, A., Méndez Fernández, P.O., Shewale, S.V., Li, L., Kimura, T., Soliman, O.Y., Papp, T.E., Tam, Y.K., et al. (2022). CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96.
Sahin, U., Karikó, K., and Türeci, Ö. (2014). mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov 13, 759–780.
Sanger, H.L., Klotz, G., Riesner, D., Gross, H.J., and Kleinschmidt, A.K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73, 3852–3856.
Sarker, D., Plummer, R., Meyer, T., Sodergren, M.H., Basu, B., Chee, C.E., Huang, K.W., Palmer, D.H., Ma, Y.T., Evans, T.R.J., et al. (2020). MTL-CEBPA, a small activating RNA therapeutic upregulating C/EBP-α, in patients with advanced liver cancer: a first-in-human, multicenter, open-label, phase I trial. Clin Cancer Res 26, 3936–3946.
Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F., et al. (2000). Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell 102, 615–623.
Segal, M., and Slack, F.J. (2020). Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin Drug Discovery 15, 987–991.
Setten, R.L., Rossi, J.J., and Han, S.P. (2019). The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18, 421–446.
Shirley, M. (2021). Casimersen: first approval. Drugs 81, 875–879.
Sun, H., Krauss, R.M., Chang, J.T., and Teng, B.B. (2018). PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res 59, 207–223.
Tang, P., Hasan, M.R., Chemaitelly, H., Yassine, H.M., Benslimane, F.M., Al Khatib, H.A., AlMukdad, S., Coyle, P., Ayoub, H.H., Al Kanaani, Z., et al. (2021). BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the SARS-CoV-2 Delta variant in Qatar. Nat Med 27, 2136–2143.
Tian, T., Zhao, Y., Zheng, J., Jin, S., Liu, Z., and Wang, T. (2021). Circular RNA: a potential diagnostic, prognostic, and therapeutic biomarker for human triple-negative breast cancer. Mol Ther-Nucl Acids 26, 63–80.
Tsimikas, S., Karwatowska-Prokopczuk, E., Gouni-Berthold, I., Tardif, J. C., Baum, S.J., Steinhagen-Thiessen, E., Shapiro, M.D., Stroes, E.S., Moriarty, P.M., Nordestgaard, B.G., et al. (2020). Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med 382, 244–255.
Vicens, Q., and Westhof, E. (2014). Biogenesis of circular RNAs. Cell 159, 13–14.
Voutila, J., Reebye, V., Roberts, T.C., Protopapa, P., Andrikakou, P., Blakey, D.C., Habib, R., Huber, H., Saetrom, P., Rossi, J.J., et al. (2017). Development and mechanism of small activating RNA targeting CEBPA, a novel therapeutic in clinical trials for liver cancer. Mol Ther 25, 2705–2714.
Wagner, K.R., Kuntz, N.L., Koenig, E., East, L., Upadhyay, S., Han, B., and Shieh, P.B. (2021). Safety, tolerability, and pharmacokinetics of casimersen in patients with Duchenne muscular dystrophy amenable to exon45 skipping: a randomized, double-blind, placebo-controlled, dosetitration trial. Muscle Nerve 64, 285–292.
Wang, Y., and Wang, Z. (2015). Efficient backsplicing produces translatable circular mRNAs. RNA 21, 172–179.
Wesselhoeft, R.A., Kowalski, P.S., and Anderson, D.G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629.
Wesselhoeft, R.A., Kowalski, P.S., Parker-Hale, F.C., Huang, Y., Bisaria, N., and Anderson, D.G. (2019). RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 74, 508–520.e4.
Wimberly, B.T., Brodersen, D.E., Clemons Jr, W.M., Morgan-Warren, R.J., Carter, A.P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407, 327–339.
Wolf, D., and Ley, K. (2019). Immunity and inflammation in atherosclerosis. Circ Res 124, 315–327.
Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A., and Felgner, P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468.
Xue, Y., Chen, R., Qu, L., and Cao, X. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468.
Yi, Z., Qu, L., Tang, H., Liu, Z., Liu, Y., Tian, F., Wang, C., Zhang, X., Feng, Z., Yu, Y., et al. (2022). Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 40, 946–955.
Zamecnik, P.C., and Stephenson, M.L. (1978). Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA 75, 280–284.
Zhang, M.M., Bahal, R., Rasmussen, T.P., Manautou, J.E., and Zhong, X.B. (2021a). The growth of siRNA-based therapeutics: updated clinical studies. Biochem Pharmacol 189, 114432.
Zhang, S., Cheng, Z., Wang, Y., and Han, T. (2021b). The risks of miRNA therapeutics: in a drug target perspective. Drug Design, Dev Ther 15, 721–733.
Zhang, Z., Yang, T., and Xiao, J. (2018). Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34, 267–274.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, C., Zhang, B. RNA therapeutics: updates and future potential. Sci. China Life Sci. 66, 12–30 (2023). https://doi.org/10.1007/s11427-022-2171-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-022-2171-2