Skip to main content
Log in

H3K27me3 shapes DNA methylome by inhibiting UHRF1-mediated H3 ubiquitination

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

DNA methylation and histone lysine tri-methylation at H3K27 (H3K27me3) are two chromatin modifications for transcriptional gene silencing, which play important roles in diverse biological processes, including cell fate determination and cell lineage commitment. These two marks are largely mutually exclusive and target distinct sets of genes in the mammalian genome. However, how H3K27me3 shapes the DNA methylome remains elusive. Here, we report that the loss of H3K27me3 modification leads to increased DNA methylation at previously marked H3K27me3 sites, indicating that H3K27me3 negatively regulates DNA methylation. Genome-wide analysis of H3 ubiquitination, essential for recruitment and activation of DNA methyltransferase DNMT1, reveals the absence of H3 ubiquitination at H3K27me3 marked nucleosomes. Moreover, loss of H3K27me3 modification induces an increase in H3K18 ubiquitination at the corresponding hyper-methylated loci. Importantly, we show that H3K27me3 directly inhibits UHRF1-mediated H3 ubiquitination toward nucleosomes in a defined biochemical assay. Taken together, our findings reveal a general mechanism for H3K27me3-mediated shaping of the mammalian DNA methylome via modulation of H3 ubiquitination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All WGBS, ChIP-seq, and RNA-seq datasets are deposited in the NCBI Gene Expression Omnibus (GEO) database under accession code GSE159043.

References

  • Amir, R.E., Van den Veyver, I.B., Wan, M., Tran, C.Q., Francke, U., and Zoghbi, H.Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • Aran, D., and Hellman, A. (2013). DNA methylation of transcriptional enhancers and cancer predisposition. Cell 154, 11–13.

    Article  CAS  PubMed  Google Scholar 

  • Aran, D., Sabato, S., and Hellman, A. (2013). DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol 14, R21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arita, K., Ariyoshi, M., Tochio, H., Nakamura, Y., and Shirakawa, M. (2008). Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455, 818–821.

    Article  CAS  PubMed  Google Scholar 

  • Arita, K., Isogai, S., Oda, T., Unoki, M., Sugita, K., Sekiyama, N., Kuwata, K., Hamamoto, R., Tochio, H., Sato, M., et al. (2012). Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci USA 109, 12950–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barau, J., Teissandier, A., Zamudio, N., Roy, S., Nalesso, V., Hérault, Y., Guillou, F., and Bourc’his, D. (2016). The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912.

    Article  CAS  PubMed  Google Scholar 

  • Bartke, T., Vermeulen, M., Xhemalce, B., Robson, S.C., Mann, M., and Kouzarides, T. (2010). Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, R.E., Golan, T., Sheinboim, D., Malcov, H., Amar, D., Salamon, A., Liron, T., Gelfman, S., Gabet, Y., Shamir, R., et al. (2016). Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res 26, 601–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M.A., Beaudet, A. L., Ecker, J.R., et al. (2010). The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28, 1045–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.

    Article  CAS  PubMed  Google Scholar 

  • Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764.

    Article  CAS  PubMed  Google Scholar 

  • Brinkman, A.B., Gu, H., Bartels, S.J.J., Zhang, Y., Matarese, F., Simmer, F., Marks, H., Bock, C., Gnirke, A., Meissner, A., et al. (2012). Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22, 1128–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocks, D., Assenov, Y., Minner, S., Bogatyrova, O., Simon, R., Koop, C., Oakes, C., Zucknick, M., Lipka, D.B., Weischenfeldt, J., et al. (2014). Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep 8, 798–806.

    Article  CAS  PubMed  Google Scholar 

  • Brookes, E., and Shi, Y. (2014). Diverse epigenetic mechanisms of human disease. Annu Rev Genet 48, 237–268.

    Article  CAS  PubMed  Google Scholar 

  • Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Cao, R., and Zhang, Y. (2004). The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev 14, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., and Zhang, Y. (2020). Role of mammalian DNA methyltransferases in development. Annu Rev Biochem 89, 135–158.

    Article  CAS  PubMed  Google Scholar 

  • Chittock, E.C., Latwiel, S., Miller, T.C.R., and Müller, C.W. (2017). Molecular architecture of polycomb repressive complexes. Biochem Soc Trans 45, 193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, J., Bachmann, A.L., Tauscher, K., Benda, C., Fierz, B., and Müller, J. (2017). DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 24, 1039–1047.

    Article  CAS  PubMed  Google Scholar 

  • The ENCODE Project Consortium, (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.

    Article  PubMed Central  CAS  Google Scholar 

  • DaRosa, P.A., Harrison, J.S., Zelter, A., Davis, T.N., Brzovic, P., Kuhlman, B., and Klevit, R.E. (2018). A bifunctional role for the UHRF1 UBL domain in the control of hemi-methylated DNA-dependent histone ubiquitylation. Mol Cell 72, 753–765.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Disteche, C.M., and Berletch, J.B. (2015). X-chromosome inactivation and escape. J Genet 94, 591–599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhamamsy, A.R. (2017). Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 34, 549–562.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elliott, E.N., Sheaffer, K.L., and Kaestner, K.H. (2016). The ‘de novo’ DNA methyltransferase Dnmt3b compensates the Dnmt1-deficient intestinal epithelium. eLife 5, e12975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finogenova, K., Bonnet, J., Poepsel, S., Schäfer, I.B., Finkl, K., Schmid, K., Litz, C., Strauss, M., Benda, C., and Müller, J. (2020). Structural basis for PRC2 decoding of active histone methylation marks H3K36me2/3. eLife 9, e61964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, B.M., Stolz, P., Mulholland, C.B., Montoya, A., Kramer, H., Bultmann, S., and Bartke, T. (2018). Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of UHRF1 toward chromatin. Mol Cell 72, 739–752.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481–514.

    Article  CAS  PubMed  Google Scholar 

  • Grosswendt, S., Kretzmer, H., Smith, Z.D., Kumar, A.S., Hetzel, S., Wittler, L., Klages, S., Timmermann, B., Mukherji, S., and Meissner, A. (2020). Epigenetic regulator function through mouse gastrulation. Nature 584, 102–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Z., Eils, R., Schlesner, M., and Ishaque, N. (2018). EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genom 19, 234.

    Article  CAS  Google Scholar 

  • Hagarman, J.A., Motley, M.P., Kristjansdottir, K., and Soloway, P.D. (2013). Coordinate regulation of DNA methylation and H3K27me3 in mouse embryonic stem cells. PLoS ONE 8, e53880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, H., Horton, J.R., Zhang, X., Bostick, M., Jacobsen, S.E., and Cheng, X. (2008). The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q.M., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S., Luu, Y., Klugman, S., et al. (2010). Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 6, 479–491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirabayashi, Y., Suzki, N., Tsuboi, M., Endo, T.A., Toyoda, T., Shinga, J., Koseki, H., Vidal, M., and Gotoh, Y. (2009). Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613.

    Article  CAS  PubMed  Google Scholar 

  • Højfeldt, J.W., Laugesen, A., Willumsen, B.M., Damhofer, H., Hedehus, L., Tvardovskiy, A., Mohammad, F., Jensen, O.N., and Helin, K. (2018). Accurate H3K27 methylation can be established de novo by SUZ12-directed PRC2. Nat Struct Mol Biol 25, 225–232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hon, G.C., Hawkins, R.D., Caballero, O.L., Lo, C., Lister, R., Pelizzola, M., Valsesia, A., Ye, Z., Kuan, S., Edsall, L.E., et al. (2012). Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res 22, 246–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hon, G.C., Rajagopal, N., Shen, Y., McCleary, D.F., Yue, F., Dang, M.D., and Ren, B. (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45, 1198–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiyama, S., Nishiyama, A., Saeki, Y., Moritsugu, K., Morimoto, D., Yamaguchi, L., Arai, N., Matsumura, R., Kawakami, T., Mishima, Y., et al. (2017). Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol Cell 68, 350–360.e7.

    Article  CAS  PubMed  Google Scholar 

  • Jain, D., Meydan, C., Lange, J., Claeys Bouuaert, C., Lailler, N., Mason, C. E., Anderson, K.V., and Keeney, S. (2017). rahu is a mutant allele of Dnmt3c, encoding a DNA methyltransferase homolog required for meiosis and transposon repression in the mouse male germline. PLoS Genet 13, e1006964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laugesen, A., Højfeldt, J.W., and Helin, K. (2019). Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell 74, 8–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, E., and Zhang, Y. (2014). DNA methylation in mammals. Cold Spring Harbor Perspect Biol 6, a019133.

    Article  CAS  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Y., Zhang, Z., Chen, J., Liu, W., Lai, W., Liu, B., Li, X., Liu, L., Xu, S., Dong, Q., et al. (2018a). Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Zheng, H., Wang, Q., Zhou, C., Wei, L., Liu, X., Zhang, W., Zhang, Y., Du, Z., Wang, X., et al. (2018b). Genome-wide analyses reveal a role of Polycomb in promoting hypomethylation of DNA methylation valleys. Genome Biol 19, 18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Lister, R., Pelizzola, M., Dowen, R.H., Hawkins, R.D., Hon, G., Tonti-Filippini, J., Nery, J.R., Lee, L., Ye, Z., Ngo, Q.M., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister, R., Pelizzola, M., Kida, Y.S., Hawkins, R.D., Nery, J.R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., et al. (2011). Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Gao, Q., Li, P., Zhao, Q., Zhang, J., Li, J., Koseki, H., and Wong, J. (2013). UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 4, 1563.

    Article  PubMed  CAS  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, F., Liu, Y., Jiang, L., Yamaguchi, S., and Zhang, Y. (2014). Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28, 2103–2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margueron, R., Li, G., Sarma, K., Blais, A., Zavadil, J., Woodcock, C.L., Dynlacht, B.D., and Reinberg, D. (2008). Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell 32, 503–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margueron, R., and Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meehan, R.R., and Pennings, S. (2017). Shoring up DNA methylation and H3K27me3 domain demarcation at developmental genes. EMBO J 36, 3407–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheletti, R., Plaisance, I., Abraham, B.J., Sarre, A., Ting, C.C., Alexanian, M., Maric, D., Maison, D., Nemir, M., Young, R.A., et al. (2017). The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med 9.

  • Ming, X., Zhang, Z., Zou, Z., Lv, C., Dong, Q., He, Q., Yi, Y., Li, Y., Wang, H., and Zhu, B. (2020). Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res 30, 980–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming, X., Zhu, B., and Li, Y. (2021). Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genom 48, 1–13.

    Article  CAS  Google Scholar 

  • Miró, X., Zhou, X., Boretius, S., Michaelis, T., Kubisch, C., Alvarez-Bolado, G., and Gruss, P. (2009). Haploinsufficiency of the murine polycomb gene Suz12 results in diverse malformations of the brain and neural tube. Dis Model Mech 2, 412–418.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, P.J., Cipriany, B.R., Wallin, C.B., Ju, C.Y., Szeto, K., Hagarman, J. A., Benitez, J.J., Craighead, H.G., and Soloway, P.D. (2013). Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc Natl Acad Sci USA 110, 7772–7777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., Shimamura, S., Arita, K., Kodama, T., Ishikawa, F., et al. (2013). Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  CAS  PubMed  Google Scholar 

  • Palii, S.S., Van Emburgh, B.O., Sankpal, U.T., Brown, K.D., and Robertson, K.D. (2008). DNA methylation inhibitor 5-Aza-2-deoxycytidine induces reversible genome-wide DNA damage that is distinctly influenced by DNA methyltransferases 1 and 3B. Mol Cell Biol 28, 752–771.

    Article  CAS  PubMed  Google Scholar 

  • Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14, 417–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, W., Wolf, P., Liu, N., Link, S., Smets, M., La Mastra, F., Forné, I., Pichler, G., Hörl, D., Fellinger, K., et al. (2015). DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res 25, 911–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucl Acids Res 44, W160–W165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddington, J.P., Perricone, S.M., Nestor, C.E., Reichmann, J., Youngson, N.A., Suzuki, M., Reinhardt, D., Dunican, D.S., Prendergast, J.G., Mjoseng, H., et al. (2013). Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 14, R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose, N.R., and Klose, R.J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta (BBA)-Gene Regulatory Mech 1839, 1362–1372.

    Article  CAS  Google Scholar 

  • Rothbart, S.B., Krajewski, K., Nady, N., Tempel, W., Xue, S., Badeaux, A. I., Barsyte-Lovejoy, D., Martinez, J.Y., Bedford, M.T., Fuchs, S.M., et al. (2012). Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19, 1155–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz, R.J., Lewis, Z.A., and Goll, M.G. (2019). DNA methylation: shared and divergent features across eukaryotes. Trends Genet 35, 818–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, M.D., He, Y., Whitaker, J.W., Hariharan, M., Mukamel, E.A., Leung, D., Rajagopal, N., Nery, J.R., Urich, M.A., Chen, H., et al. (2015). Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, M.D., Schmitz, R.J., and Ecker, J.R. (2012). ‘Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet 28, 583–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartzentruber, J., Korshunov, A., Liu, X.Y., Jones, D.T.W., Pfaff, E., Jacob, K., Sturm, D., Fontebasso, A.M., Quang, D.A.K., Tönjes, M., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231.

    Article  CAS  PubMed  Google Scholar 

  • Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T. A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., et al. (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912.

    Article  CAS  PubMed  Google Scholar 

  • Simon, J.A., and Kingston, R.E. (2009). Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10, 697–708.

    Article  CAS  PubMed  Google Scholar 

  • Song, Q., Decato, B., Hong, E.E., Zhou, M., Fang, F., Qu, J., Garvin, T., Kessler, M., Zhou, J., and Smith, A.D. (2013). A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PLoS ONE 8, e81148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stadler, M.B., Murr, R., Burger, L., Ivanek, R., Lienert, F., Schöler, A., van Nimwegen, E., Wirbelauer, C., Oakeley, E.J., Gaidatzis, D., et al. (2011). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495.

    Article  CAS  PubMed  Google Scholar 

  • Tsumura, A., Hayakawa, T., Kumaki, Y., Takebayashi, S., Sakaue, M., Matsuoka, C., Shimotohno, K., Ishikawa, F., Li, E., Ueda, H.R., et al. (2006). Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11, 805–814.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan, R.M., Dickson, B.M., Whelihan, M.F., Johnstone, A.L., Cornett, E.M., Cheek, M.A., Ausherman, C.A., Cowles, M.W., Sun, Z.W., and Rothbart, S.B. (2018). Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. Proc Natl Acad Sci USA 115, 8775–8780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H., Huang, Z.Q., Xia, L., Feng, Q., Erdjument-Bromage, H., Strahl, B.D., Briggs, S.D., Allis, C.D., Wong, J., Tempst, P., et al. (2001). Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293, 853–857.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Yu, G., Ming, X., Xia, W., Xu, X., Zhang, Y., Zhang, W., Li, Y., Huang, C., Xie, H., et al. (2020). Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat Genet 52, 828–839.

    Article  CAS  PubMed  Google Scholar 

  • Wu, G., Broniscer, A., McEachron, T.A., Lu, C., Paugh, B.S., Becksfort, J., Qu, C., Ding, L., Huether, R., Parker, M., et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44, 251–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li, E., Zhang, Y., and Sun, Y.E. (2010). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, W., Schultz, M.D., Lister, R., Hou, Z., Rajagopal, N., Ray, P., Whitaker, J.W., Tian, S., Hawkins, R.D., Leung, D., et al. (2013). Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Hu, B., Hou, Y., Qiao, Y., Wang, R., Chen, Y., Qian, Y., Feng, S., Chen, J., Liu, C., et al. (2018). Silencing of developmental genes by H3K27me3 and DNA methylation reflects the discrepant plasticity of embryonic and extraembryonic lineages. Cell Res 28, 593–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, G., Wang, L.G., and He, Q.Y. (2015). ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 31, 2382–2383.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J.R., Lee, C.H., Oksuz, O., Stafford, J.M., and Reinberg, D. (2019). PRC2 is high maintenance. Genes Dev 33, 903–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, W., Zhang, F., Wang, S., Fu, Y., Chen, J., Liang, X., Le, H., Pu, W.T., and Zhang, B. (2017). Depletion of Polycomb repressive complex 2 core component EED impairs fetal hematopoiesis. Cell Death Dis 8, e2744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, X., and Wu, X. (2021). Polycomb-group proteins in the initiation and progression of cancer. J Genet Genom 48, 433–443.

    Article  CAS  Google Scholar 

  • Ziller, M.J., Gu, H., Müller, F., Donaghey, J., Tsai, L.T.Y., Kohlbacher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein, B.E., et al. (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0107001, 2018YFC1004000), the CAS Project for Young Scientists in Basic Research (YSBR-012), and the National Natural Science Foundation of China (32070607). We thank Dr. Jiemin Wong from East China Normal University for the UHRF1 expression plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falong Lu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, Y., Xie, Y. et al. H3K27me3 shapes DNA methylome by inhibiting UHRF1-mediated H3 ubiquitination. Sci. China Life Sci. 65, 1685–1700 (2022). https://doi.org/10.1007/s11427-022-2155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2155-0

Keywords

Navigation