Skip to main content
Log in

A neuropsin-based optogenetic tool for precise control of Gq signaling

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Gq-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca2+ signals. There is a strong need for an optogenetic tool that enables powerful experimental control over Gq signaling. Here, we present chicken opsin 5 (cOpn5) as the long sought-after, single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular Gq signaling with high temporal and spatial resolution. Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered, Gq-dependent Ca2+ release from intracellular stores and protein kinase C activation. Strong Ca2+ transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools. Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca2+ transition, thus demonstrating the high spatial precision of cOpn5 optogenetics. The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner. cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of Gq signaling in both non-excitable cells and excitable cells in all major organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N.J., Rönnbäck, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Adams, S.R., and Tsien, R.Y. (1993). Controlling cell chemistry with caged compounds. Annu Rev Physiol 55, 755–784.

    Article  CAS  PubMed  Google Scholar 

  • Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H., and Deisseroth, K. (2009). Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029.

    Article  CAS  PubMed  Google Scholar 

  • Allen, N.J., and Eroglu, C. (2017). Cell biology of astrocyte-synapse interactions. Neuron 96, 697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellono, N.W., Kammel, L.G., Zimmerman, A.L., and Oancea, E. (2013). UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proc Natl Acad Sci USA 110, 2383–2388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., and Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263–1268.

    Article  CAS  PubMed  Google Scholar 

  • Brueggemann, L.I., and Sullivan, J.M. (2002). HEK293S cells have functional retinoid processing machinery. J Gen Physiol 119, 593–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calligaro, H., Dkhissi-Benyahya, O., and Panda, S. (2022). Ocular and extraocular roles of neuropsin in vertebrates. Trends Neuroscis 45, 200–211.

    Article  CAS  Google Scholar 

  • Clapham, D.E. (2007). Calcium signaling. Cell 131, 1047–1058.

    Article  CAS  PubMed  Google Scholar 

  • Copits, B.A., Gowrishankar, R., O’Neill, P.R., Li, J.N., Girven, K.S., Yoo, J.J., Meshik, X., Parker, K.E., Spangler, S.M., Elerding, A.J., et al. (2021). A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 109, 1791–1809.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, R., Yu, T., Weng, D., Li, H., Cui, Y., Wu, Z., Guo, Q., Zou, H., Wu, W., Gao, X., et al. (2022). A neuropsin-based optogenetic tool for precise control of Gq signaling. bioRxiv 2022.02.22.481462.

  • Exton, J.H. (1996). Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 36, 481–509.

    Article  CAS  PubMed  Google Scholar 

  • Fenno, L., Yizhar, O., and Deisseroth, K. (2011). The development and application of optogenetics. Annu Rev Neurosci 34, 389–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo, M., Lane, S., Stout Jr., R.F., Liu, B., Parpura, V., Teschemacher, A.G., and Kasparov, S. (2014). Comparative analysis of optogenetic actuators in cultured astrocytes. Cell Calcium 56, 208–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerasimov, E., Erofeev, A., Borodinova, A., Bolshakova, A., Balaban, P., Bezprozvanny, I., and Vlasova, O.L. (2021). Optogenetic activation of astrocytes—effects on neuronal network function. Int J Mol Sci 22, 9613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez, J.L., Bonaventura, J., Lesniak, W., Mathews, W.B., Sysa-Shah, P., Rodriguez, L.A., Ellis, R.J., Richie, C.T., Harvey, B.K., Dannals, R.F., et al. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Güler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H., et al. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hankins, M.W., Peirson, S.N., and Foster, R.G. (2008). Melanopsin: an exciting photopigment. Trends Neuroscis 31, 27–36.

    Article  CAS  Google Scholar 

  • Hartwig, J.H., Thelen, M., Rosen, A., Janmey, P.A., Nairn, A.C., and Aderem, A. (1992). MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356, 618–622.

    Article  CAS  PubMed  Google Scholar 

  • Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauser, A.S., Attwood, M.M., Rask-Andersen, M., Schiöth, H.B., and Gloriam, D.E. (2017). Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 16, 829–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herlitze, S., and Landmesser, L.T. (2007). New optical tools for controlling neuronal activity. Curr Opin Neurobiol 17, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Q.M., Yi, W.J., Su, M.Y., Jiang, S., Xu, S.Z., and Lei, T.C. (2017). Induction of retinal-dependent calcium influx in human melanocytes by UVA or UVB radiation contributes to the stimulation of melanosome transfer. Cell Prolif 50, e12372.

    Article  PubMed Central  CAS  Google Scholar 

  • Jennings, J.H., Rizzi, G., Stamatakis, A.M., Ung, R.L., and Stuber, G.D. (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadamur, G., and Ross, E.M. (2013). Mammalian phospholipase C. Annu Rev Physiol 75, 127–154.

    Article  CAS  PubMed  Google Scholar 

  • Kojima, D., Mori, S., Torii, M., Wada, A., Morishita, R., and Fukada, Y. (2011). UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS ONE 6, e26388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyanagi, M., and Terakita, A. (2014). Diversity of animal opsin-based pigments and their optogenetic potential. Biochim Biophys Acta 1837, 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Krashes, M.J., Koda, S., Ye, C.P., Rogan, S.C., Adams, A.C., Cusher, D.S., Maratos-Flier, E., Roth, B.L., and Lowell, B.B. (2011). Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121, 1424–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zeng, J., Zhang, J., Yue, C., Zhong, W., Liu, Z., Feng, Q., and Luo, M. (2018). Hypothalamic circuits for predation and evasion. Neuron 97, 911–924.e5.

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.Y. (2011). A user’s guide to channelrhodopsin variants: features, limitations and future developments. Exp Physiol 96, 19–25.

    Article  PubMed  Google Scholar 

  • Linnerbauer, M., Wheeler, M.A., and Quintana, F.J. (2020). Astrocyte crosstalk in CNS inflammation. Neuron 108, 608–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, L., Wang, R., and Luo, M. (2020). An optical brain-to-brain interface supports rapid information transmission for precise locomotion control. Sci China Life Sci 63, 875–885.

    Article  PubMed  Google Scholar 

  • Luo, Q. (2020). A brief introduction to biophotonic techniques and methods. Sci China Life Sci 63, 1771–1775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahn, M., Saraf-Sinik, I., Patil, P., Pulin, M., Bitton, E., Karalis, N., Bruentgens, F., Palgi, S., Gat, A., Dine, J., et al. (2021). Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109, 1621–1635.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mederos, S., Hernández-Vivanco, A., Ramírez-Franco, J., Martín-Fernández, M., Navarrete, M., Yang, A., Boyden, E.S., and Perea, G. (2019). Melanopsin for precise optogenetic activation of astrocyteneuron networks. Glia 67, 915–934.

    Article  PubMed  Google Scholar 

  • Melyan, Z., Tarttelin, E.E., Bellingham, J., Lucas, R.J., and Hankins, M.W. (2005). Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745.

    Article  CAS  PubMed  Google Scholar 

  • Mure, L.S., Hatori, M., Zhu, Q., Demas, J., Kim, I.M., Nayak, S.K., and Panda, S. (2016). Melanopsin-encoded response properties of intrinsically photosensitive retinal ganglion cells. Neuron 90, 1016–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane, Y., Ikegami, K., Ono, H., Yamamoto, N., Yoshida, S., Hirunagi, K., Ebihara, S., Kubo, Y., and Yoshimura, T. (2010). A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci USA 107, 15264–15268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane, Y., Shimmura, T., Abe, H., and Yoshimura, T. (2014). Intrinsic photosensitivity of a deep brain photoreceptor. Curr Biol 24, R596–R597.

    Article  CAS  PubMed  Google Scholar 

  • Panda, S., Provencio, I., Tu, D.C., Pires, S.S., Rollag, M.D., Castrucci, A. M., Pletcher, M.T., Sato, T.K., Wiltshire, T., Andahazy, M., et al. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301, 525–527.

    Article  CAS  PubMed  Google Scholar 

  • Panda, S., Nayak, S.K., Campo, B., Walker, J.R., Hogenesch, J.B., and Jegla, T. (2005). Illumination of the melanopsin signaling pathway. Science 307, 600–604.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, X., Kumbalasiri, T., Carlson, S.M., Wong, K.Y., Krishna, V., Provencio, I., and Berson, D.M. (2005). Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Quadrato, G., Nguyen, T., Macosko, E.Z., Sherwood, J.L., Min Yang, S., Berger, D.R., Maria, N., Scholvin, J., Goldman, M., Kinney, J.P., et al. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios, M.N., Marchese, N.A., and Guido, M.E. (2019). Expression of nonvisual opsins Opn3 and Opn5 in the developing inner retinal cells of birds. Light-responses in Müller glial cells. Front Cell Neurosci 13, 376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritter, S.L., and Hall, R.A. (2009). Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10, 819–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogan, S.C., and Roth, B.L. (2011). Remote control of neuronal signaling. Pharmacol Rev 63, 291–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbaum, D.M., Rasmussen, S.G.F., and Kobilka, B.K. (2009). The structure and function of G-protein-coupled receptors. Nature 459, 356–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rost, B.R., Schneider-Warme, F., Schmitz, D., and Hegemann, P. (2017). Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603.

    Article  CAS  PubMed  Google Scholar 

  • Roth, B.L. (2016). DREADDs for neuroscientists. Neuron 89, 683–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildge, S., Bohrer, C., Beck, K., and Schachtrup, C. (2013). Isolation and culture of mouse cortical astrocytes. J Vis Exp doi: https://doi.org/10.3791/50079.

  • Sofroniew, M.V. (2015). Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16, 249–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoida, K., Masseck, O.A., Deneris, E.S., and Herlitze, S. (2014). Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice. Proc Natl Acad Sci USA 111, 6479–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoida, K., Eickelbeck, D., Karapinar, R., Eckhardt, T., Mark, M.D., Jancke, D., Ehinger, B.V., König, P., Dalkara, D., Herlitze, S., et al. (2016). Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr Biol 26, 1206–1212.

    Article  CAS  PubMed  Google Scholar 

  • Stuber, G.D., and Wise, R.A. (2016). Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 19, 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi, M., Suzumura, K., Nagai, K., Kawasaki, T., Saito, T., Takasaki, J., Suzuki, K., Fujita, S., and Tsukamoto, S. (2003). Structure of YM254890, a novel Gq/11 inhibitor from Chromobacterium sp. QS3666. Tetrahedron 59, 4533–4538.

    Article  CAS  Google Scholar 

  • Terakita, A. (2005). The opsins. Genome Biol 6, 213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009). Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6, 875–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto, H., and Terakita, A. (2010). Diversity and functional properties of bistable pigments. Photochem Photobiol Sci 9, 1435.

    Article  CAS  PubMed  Google Scholar 

  • Tye, K.M., and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13, 251–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urban, D.J., and Roth, B.L. (2015). DREADDs (designer receptors exclusively activated by designer drugs): chemogenetic tools with therapeutic utility. Annu Rev Pharmacol Toxicol 55, 399–417.

    Article  CAS  PubMed  Google Scholar 

  • Vaezy, S., Shi, X., Martin, R.W., Chi, E., Nelson, P.I., Bailey, M.R., and Crum, L.A. (2001). Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol 27, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Wagdi, A., Malan, D., Sathyanarayanan, U., Beauchamp, J.S., Vogt, M., Zipf, D., Beiert, T., Mansuroglu, B., Dusend, V., Meininghaus, M., et al. (2022). Selective optogenetic control of Gq signaling using human neuropsin. Nat Commun 13, 1–8.

    Article  CAS  Google Scholar 

  • Wettschureck, N., and Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiol Rev 85, 1159–1204.

    Article  CAS  PubMed  Google Scholar 

  • Xie, A.X., Petravicz, J., and McCarthy, K.D. (2015). Molecular approaches for manipulating astrocytic signaling in vivo. Front Cell Neurosci 9, 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xue, T., Do, M.T.H., Riccio, A., Jiang, Z., Hsieh, J., Wang, H.C., Merbs, S. L., Welsbie, D.S., Yoshioka, T., Weissgerber, P., et al. (2011). Melanopsin signalling in mammalian iris and retina. Nature 479, 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita, T., Ohuchi, H., Tomonari, S., Ikeda, K., Sakai, K., and Shichida, Y. (2010). Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci USA 107, 22084–22089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau, K.W., and Hardie, R.C. (2009). Phototransduction motifs and variations. Cell 139, 246–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, X., Nagai, J., and Khakh, B.S. (2020). Improved tools to study astrocytes. Nat Rev Neurosci 21, 121–138.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Wang, L.P., Boyden, E.S., and Deisseroth, K. (2006). Channelrhodopsin-2 and optical control of excitable cells. Nat Methods 3, 785–792.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Vierock, J., Yizhar, O., Fenno, L.E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., et al. (2011). The microbial opsin family of optogenetic tools. Cell 147, 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Tan, L., Ren, Y., Liang, J., Lin, R., Feng, Q., Zhou, J., Hu, F., Ren, J., Wei, C., et al. (2016). Presynaptic excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell 166, 716–728.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K.X., D’Souza, S., Upton, B.A., Kernodle, S., Vemaraju, S., Nayak, G., Gaitonde, K.D., Holt, A.L., Linne, C.D., Smith, A.N., et al. (2020). Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature 585, 420–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., and van den Pol, A.N. (2017). Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356, 853–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., and Carmignoto, G. (2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 6, 43–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology China Brain Initiative Grant (2021ZD0202803), the Research Unit of Medical Neurobiology at Chinese Academy of Medical Sciences (2019RU003), and Beijing Municipal Government. We would like to thank members of Luo laboratory for critical discussion of the paper. We thank the Imaging cores at Chinese Institute for Brain Research, Beijing and National Institute of Biological Sciences, Beijing for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minmin Luo.

Additional information

Data and code availability

Data and custom programs are available upon request. All the programs used are on the institute hosted server and can be accessed at http://imaging.cibr.ac.cn/Public/Upload/Content/20211025/617639f0637c2.rar.

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, R., Yu, T., Weng, D. et al. A neuropsin-based optogenetic tool for precise control of Gq signaling. Sci. China Life Sci. 65, 1271–1284 (2022). https://doi.org/10.1007/s11427-022-2122-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2122-0

Keywords

Navigation