Skip to main content
Log in

CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The CREB1 gene encodes an exceptionally pleiotropic transcription factor that frequently dysregulated in human cancers. CREB1 can regulate tumor cell status of proliferation and/or migration; however, the molecular basis for this switch involvement in cell plasticity has not fully been understood yet. Here, we first show that knocking out CREB1 triggers a remarkable effect of epithelial-mesenchymal transition (EMT) and leads to the occurrence of inhibited proliferation and enhanced motility in HCT116 colorectal cancer cells. By monitoring 45 cellular signaling pathway activities, we find that multiple growth-related pathways decline significantly while inflammatory pathways including NF-κB are largely upregulated in comparing between the CREB1 wild-type and knocked out cells. Mechanistically, cells with CREB1 knocked out show downregulation of MYC as a result of impaired CREB1-dependent transcription of the oncogenic lncRNA CCAT1. Interestingly, the unbalanced competition between the coactivator CBP/p300 for CREB1 and p65 leads to the activation of the NF-κB pathway in cells with CREB1 disrupted, which induces an obvious EMT phenotype of the cancer cells. Taken together, these studies identify previously unknown mechanisms of CREB1 in CRC cell plasticity via regulating lncRNA CCAT1 and NF-κB pathways, providing a critical insight into a combined strategy for CREB1-targeted tumor therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augenlicht, L.H., Davis, R., Lisanti, M.P., Zhurinsky, J., Troussard, A.A., D’Amico, M., Donehower, L.A., Takemaru, K.I., Moon, R.T., BenZe’ev, A., et al. (2000). The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3β and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem 275, 32649–32657.

    Article  PubMed  Google Scholar 

  • Berkowitz, L.A., Riabowol, K.T., and Gilman, M.Z. (1989). Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol Cell Biol 9, 4272–4281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boque-Sastre, R., Soler, M., Oliveira-Mateos, C., Portela, A., Moutinho, C., Sayols, S., Villanueva, A., Esteller, M., and Guil, S. (2015). Head-to-head antisense transcription and R-loop formation promotes transcriptional activation. Proc Natl Acad Sci USA 112, 5785–5790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulon, S., Dantonel, J.C., Binet, V., Vie, A., Blanchard, J.M., Hipskind, R.A., and Philips, A. (2002). Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism. Mol Cell Biol 22, 7769–7779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulun, S.E., Lin, Z., Zhao, H., Lu, M., Amin, S., Reierstad, S., and Chen, D. (2009). Regulation of aromatase expression in breast cancer tissue. Ann N Y Acad Sci 1155, 121–131.

    Article  CAS  PubMed  Google Scholar 

  • Carlezon, W.A., Duman, R.S., and Nestler, E.J. (2005). The many faces of CREB. Trends Neuroscis 28, 436–445.

    Article  CAS  Google Scholar 

  • Chhabra, A., Fernando, H., Watkins, G., Mansel, R.E., and Jiang, W.G. (2007). Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep 18, 953–958.

    CAS  PubMed  Google Scholar 

  • Choi, M.J., Cho, K.H., Lee, S., Bae, Y.J., Jeong, K.J., Rha, S.Y., Choi, E.J., Park, J.H., Kim, J.M., Lee, J.S., et al. (2015). hTERT mediates norepinephrine-induced Slug expression and ovarian cancer aggressiveness. Oncogene 34, 3402–3412.

    Article  CAS  PubMed  Google Scholar 

  • Chua, H.L., Bhat-Nakshatri, P., Clare, S.E., Morimiya, A., Badve, S., and Nakshatri, H. (2006). NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene 26, 711–724.

    Article  PubMed  CAS  Google Scholar 

  • Dai, X., Xin, Y., Xu, W., Tian, X., Wei, X., and Zhang, H. (2021). CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells. Sci China Life Sci 64, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Feng, J., Liu, T., Qin, B., Zhang, Y., and Liu, X.S. (2012). Identifying ChIP-seq enrichment using MACS. Nat Protoc 7, 1728–1740.

    Article  CAS  PubMed  Google Scholar 

  • Fusco, S., Leone, L., Barbati, S.A., Samengo, D., Piacentini, R., Maulucci, G., Toietta, G., Spinelli, M., McBurney, M., Pani, G., et al. (2016). A CREB-Sirt1-Hes1 circuitry mediates neural stem cell response to glucose availability. Cell Rep 14, 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Gao, C.F., Xie, Q., Su, Y.L., Koeman, J., Kean Khoo, S., Gustafson, M., Knudsen, B.S., Hay, R., Shinomiya, N., and Vande Woude, G.F. (2005). Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci USA 102, 10528–10533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerritsen, M.E., Williams, A.J., Neish, A.S., Moore, S., Shi, Y., and Collins, T. (1997). CREB-binding protein/p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 94, 2927–2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, S., Lu, Y., and Hu, Y. (2008). A role of CREB in BRCA1 constitutive promoter activity and aromatase basal expression. Int J Biomed Sci 4, 260–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman, M.J., Craft, B., Hastie, M., Repečka, K., McDade, F., Kamath, A., Banerjee, A., Luo, Y., Rogers, D., Brooks, A.N., et al. (2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38, 675–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Mariscal, L., Tapia, R., Huerta, M., and Lopez-Bayghen, E. (2009). The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression. Ann N Y Acad Sci 1165, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y.H., Wang, L.Q., Li, B., Xu, H., Yang, J.H., Zheng, L.S., Yu, P., Zhou, A.D., Zhang, Y., Xie, S.J., et al. (2016). Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 7, 42513–42526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D. (2022). Hallmarks of cancer: new dimensions. Cancer Discov 12, 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Pettaway, C.A., Uehara, H., Bucana, C.D., and Fidler, I.J. (2001). Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20, 4188–4197.

    Article  CAS  PubMed  Google Scholar 

  • Huber, M.A., Azoitei, N., Baumann, B., Grünert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H., and Wirth, T. (2004). NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huerta, M., Muñoz, R., Tapia, R., Soto-Reyes, E., Ramírez, L., Recillas-Targa, F., González-Mariscal, L., and López-Bayghen, E. (2007). Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Mol Biol Cell 18, 4826–4836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummler, E., Cole, T.J., Blendy, J.A., Ganss, R., Aguzzi, A., Schmid, W., Beermann, F., and Schütz, G. (1994). Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci USA 91, 5647–5651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impey, S., McCorkle, S.R., Cha-Molstad, H., Dwyer, J.M., Yochum, G.S., Boss, J.M., McWeeney, S., Dunn, J.J., Mandel, G., and Goodman, R.H. (2004). Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041–1054.

    CAS  PubMed  Google Scholar 

  • James, M.A., Lu, Y., Liu, Y., Vikis, H.G., and You, M. (2009). RGS17, an overexpressed gene in human lung and prostate cancer, induces tumor cell proliferation through the cyclic AMP-PKA-CREB pathway. Cancer Res 69, 2108–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen-Dürr, P., Meichle, A., Steiner, P., Pagano, M., Finke, K., Botz, J., Wessbecher, J., Draetta, G., and Eilers, M. (1993). Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 90, 3685–3689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kam, Y., Rubinstein, A., Naik, S., Djavsarov, I., Halle, D., Ariel, I., Gure, A.O., Stojadinovic, A., Pan, H.G., Tsivin, V., et al. (2014). Detection of a long non-coding RNA (CCAT1) in living cells and human adenocarcinoma of colon tissues using FIT-PNA molecular beacons. Cancer Lett 352, 90–96.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., and Tanabe, M. (2019). New approach for understanding genome variations in KEGG. Nucleic Acids Res 47, D590–D595.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T., Jeon, Y.J., Cui, R., Lee, J.H., Peng, Y., Kim, S.H., Tili, E., Alder, H., and Croce, C.M. (2015). Role of MYC-regulated long noncoding RNAs in cell cycle regulation and tumorigenesis. JNCI J Natl Cancer Inst 107, dju505.

    Article  PubMed  CAS  Google Scholar 

  • Kunsch, C., Lang, R.K., Rosen, C.A., and Shannon, M.F. (1994). Synergistic transcriptional activation of the IL-8 gene by NF-kappa B p65 (RelA) and NF-IL-6. J Immunol 153, 153–164.

    CAS  PubMed  Google Scholar 

  • Lee, H.J.J., Mignacca, R.C., and Sakamoto, K.M. (1995). Transcriptional activation of egr-1 by granulocyte-macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133. J Biol Chem 270, 15979–15983.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R.J., Albanese, C., Stenger, R.J., Watanabe, G., Inghirami, G., Haines Iii, G.K., Webster, M., Muller, W.J., Brugge, J.S., Davis, R.J., et al. (1999). pp60v-src induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP response element-binding protein and activating transcription factor-2 in pp60v-src signaling in breast cancer cells. J Biol Chem 274, 7341–7350.

    Article  CAS  PubMed  Google Scholar 

  • Lemberger, T., Parkitna, J.R., Chai, M., Schütz, G., and Engblom, D. (2008). CREB has a context-dependent role in activity-regulated transcription and maintains neuronal cholesterol homeostasis. FASEB J 22, 2872–2879.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B.D., Sun, L.J., and Song, E.W. (2013). Non-coding RNAs regulate tumor cell plasticity. Sci China Life Sci 56, 886–890.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Radisky, D.C., Yang, D., Xu, R., Radisky, E.S., Bissell, M.J., and Bishop, J.M. (2012). MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits. Nat Cell Biol 14, 567–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonze, B.E., and Ginty, D.D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron 35, 605–623.

    Article  CAS  PubMed  Google Scholar 

  • Merrell, A.J., and Stanger, B.Z. (2016). Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 17, 413–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael, M.D., Michael, L.F., and Simpson, E.R. (1997). A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol 134, 147–156.

    Article  CAS  PubMed  Google Scholar 

  • Nagata, D., Suzuki, E., Nishimatsu, H., Satonaka, H., Goto, A., Omata, M., and Hirata, Y. (2001). Transcriptional activation of the cyclin D1 gene is mediated by multiple cis-elements, including SP1 sites and a cAMP-responsive element in vascular endothelial cells. J Biol Chem 276, 662–669.

    Article  CAS  PubMed  Google Scholar 

  • Nissan, A., Stojadinovic, A., Mitrani-Rosenbaum, S., Halle, D., Grinbaum, R., Roistacher, M., Bochem, A., Dayanc, B.E., Ritter, G., Gomceli, I., et al. (2012). Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 130, 1598–1606.

    Article  CAS  PubMed  Google Scholar 

  • Perkins, N.D., and Gilmore, T.D. (2006). Good cop, bad cop: the different faces of NF-κB. Cell Death Differ 13, 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Philipp, A., Schneider, A., Väsrik, I., Finke, K., Xiong, Y., Beach, D., Alitalo, K., and Eilers, M. (1994). Repression of cyclin D1: a novel function of MYC. Mol Cell Biol 14, 4032–4043.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano, G., Chagani, S., and Kwong, L.N. (2018). The path to metastatic mouse models of colorectal cancer. Oncogene 37, 2481–2489.

    Article  CAS  PubMed  Google Scholar 

  • Sapio, L., Salzillo, A., Ragone, A., Illiano, M., Spina, A., and Naviglio, S. (2020). Targeting CREB in cancer therapy: a key candidate or one of many? An update. Cancers 12, 3166.

    CAS  Google Scholar 

  • Seoane, J., Le, H.V., and Massagué, J. (2002). Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, D.B., Cheng, J.C., Kinjo, K., Federman, N., Moore, T.B., Gill, A., Rao, N.P., Landaw, E.M., and Sakamoto, K.M. (2005). The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 7, 351–362.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, D.B., and Sakamoto, K.M. (2004). The role of cyclic-AMP binding protein (CREB) in leukemia cell proliferation and acute leukemias. Leukemia Lymphoma 45, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Solomon, D.L., Philipp, A., Land, H., and Eilers, M. (1995). Expression of cyclin D1 mRNA is not upregulated by Myc in rat fibroblasts. Oncogene 11, 1893–1897.

    CAS  PubMed  Google Scholar 

  • Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., Möröy, T., Bartek, J., Massagué, J., Hänel, F., et al. (2001). Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3, 392–399.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swier, L.J.Y.M., Dzikiewicz-Krawczyk, A., Winkle, M., van den Berg, A., and Kluiver, J. (2019). Intricate crosstalk between MYC and non-coding RNAs regulates hallmarks of cancer. Mol Oncol 13, 26–45.

    Article  CAS  PubMed  Google Scholar 

  • Tan, X., Wang, S., Zhu, L., Wu, C., Yin, B., Zhao, J., Yuan, J., Qiang, B., and Peng, X. (2012). cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci USA 109, 15805–15810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi, S., Pohl, M.O., Zhou, Y., Rodriguez-Frandsen, A., Wang, G., Stein, D.A., Moulton, H.M., DeJesus, P., Che, J., Mulder, L.C.F., et al. (2015). Meta- and orthogonal integration of influenza “OMICs” data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Liu, X., Wu, H., Ni, P., Gu, Z., Qiao, Y., Chen, N., Sun, F., and Fan, Q. (2010). CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 38, 5366–5383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.W., Hu, L.F., Hao, J., Liao, L.Q., Chiu, Y.T., Shi, M., and Wang, Y. (2019). A microRNA-inducible CRISPR-Cas9 platform serves as a microRNA sensor and cell-type-specific genome regulation tool. Nat Cell Biol 21, 522–530.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B.E., Mochon, E., and Boxer, L.M. (1996). Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16, 5546–5556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, L.D., Farmer, A.A., and Richmond, A. (1995). HMGI(Y) and Sp1 in addition to NF-κB regulate transcription of the MGSA/GROα gene. Nucl Acids Res 23, 4210–4219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, D., Zhau, H.E., Huang, W.C., Iqbal, S., Habib, F.K., Sartor, O., Cvitanovic, L., Marshall, F.F., Xu, Z., and Chung, L.W.K. (2007). cAMP-responsive element-binding protein regulates vascular endothelial growth factor expression: implication in human prostate cancer bone metastasis. Oncogene 26, 5070–5077.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, J.F., Yin, Q.F., Chen, T., Zhang, Y., Zhang, X.O., Wu, Z., Zhang, S., Wang, H.B., Ge, J., Lu, X., et al. (2014). Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24, 513–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin, Y., Li, Z., Shen, J., Chan, M.T.V., and Wu, W.K.K. (2016). CCAT1: a pivotal oncogenic long non-coding RNA in human cancers. Cell Prolif 49, 255–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, W., Shen, J., Wu, M., Arsura, M., FitzGerald, M., Suldan, Z., Kim, D.W., Hofmann, C.S., Pianetti, S., Romieu-Mourez, R., et al. (2001). Repression of transcription of the p27Kip1 cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688–1702.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, S., Norgard, R.J., and Stanger, B.Z. (2019). Cellular plasticity in cancer. Cancer Discov 9, 837–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Li, H., Pu, W., Chen, L., Guo, D., Jiang, H., He, B., Qin, S., Wang, K., Li, N., et al. (2022). Cancer metabolism and tumor microenvironment: fostering each other? Sci China Life Sci 65, 236–279.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Wang, L., Wu, D., Chen, H., Chen, Z., Thomas-Ahner, J.M., Zynger, D.L., Eeckhoute, J., Yu, J., Luo, J., et al. (2011). Definition of a FoxA1 cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Res 71, 6738–6748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Odom, D.T., Koo, S.H., Conkright, M.D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., et al. (2005). Oenome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA 102, 4459–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y.J., Zhang, J., Wang, Y.C., Wang, L., and He, X.Y. (2021). MiR-450a-5p inhibits gastric cancer cell proliferation, migration, and invasion and promotes apoptosis via targeting CREB1 and inhibiting AKT/OSK-3β signaling pathway. Front Oncol 11, 633366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, K.R., Liu, S., Sun, W.J., Zheng, L.L., Zhou, H., Yang, J.H., and Qu, L.H. (2017). ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIPseq data. Nucleic Acids Res 45, D43–D50.

    Article  CAS  PubMed  Google Scholar 

  • Zong, W.X., Edelstein, L.C., Chen, C., Bash, J., and Oélinas, C. (1999). The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-kappa B that blocks TNFalpha -induced apoptosis. Genes Dev 13, 382–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31970604, 31900903, 31770879), the Major Research Plan of the National Natural Science Foundation of China (91940000), the National Key Research and Development Program of China (2017YFA0504400), in part by the Guangdong Province Key Laboratory of Computational Science (13lgjc05), the Guangdong Province Computational Science Innovative Research Team (14lgjc18), and the Fundamental Research Funds for the Central Universities (20lgpy112, 2021qntd26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhua Yang or Lianghu Qu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Zheng, L., Ye, J. et al. CREB1 contributes colorectal cancer cell plasticity by regulating lncRNA CCAT1 and NF-κB pathways. Sci. China Life Sci. 65, 1481–1497 (2022). https://doi.org/10.1007/s11427-022-2108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2108-x

Keywords

Navigation