Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection

  • Research Paper
  • Published: 28 January 2022
  • Volume 65, pages 1535–1546, (2022)
  • Cite this article
Download PDF
Science China Life Sciences Aims and scope Submit manuscript
A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection
Download PDF
  • Kui Xu1,2 na1,
  • Xiuling Zhang1 na1,
  • Zhiguo Liu1 na1,
  • Jinxue Ruan1,3,
  • Changjiang Xu1,
  • Jingjing Che1,
  • Ziyao Fan1,
  • Yulian Mu1 &
  • …
  • Kui Li1,2 
  • 915 Accesses

  • 5 Citations

  • 1 Altmetric

  • Explore all metrics

Abstract

Gene-edited pigs for agricultural and biomedical applications are typically generated using somatic cell nuclear transfer (SCNT). However, SCNT requires the use of monoclonal cells as donors, and the time-consuming and laborious monoclonal selection process limits the production of large populations of gene-edited animals. Here, we developed a rapid and efficient method named RE-DSRNP (reporter RNA enriched dual-sgRNA/CRISPR-Cas9 ribonucleoproteins) for generating gene-edited donor cells. RE-DSRNP takes advantage of the precise and efficient editing features of dual-sgRNA and the high editing efficiency, low off-target effects, transgene-free nature, and low cytotoxic characteristics of reporter RNA enriched RNPs (CRISPR-Cas9 ribonucleoproteins), thus eliminating the need for the selection of monoclonal cells and thereby greatly reducing the generation time of donor cells from 3–4 weeks to 1 week, while also reducing the extent of apoptosis and chromosomal aneuploidy of donor cells. We applied RE-DSRNP to produce cloned pigs bearing a deletion edit of the wild-type p53-induced phosphatase 1 (WIP1) gene: among 32 weaned cloned pigs, 31 (97%) carried WIP1 edits, and 15 (47%) were homozygous for the designed fragment deletion, and no off-target event was detected. The WIP1 knockout (KO) pigs exhibited male reproductive disorders, illustrating the utility of RE-DSRNP for rapidly generating precisely edited animals for functional genomics and disease research. RE-DSRNP’s strong editing performance in a large animal and its marked reduction in the required time for producing SCNT donor cells support its application prospects for rapidly generating populations of transgene-free cloned animals.

Article PDF

Download to read the full article text

Similar content being viewed by others

Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs

Article Open access 18 September 2015

Jinxue Ruan, Hegang Li, … Kui Li

Genome Editing in Pigs

Chapter © 2023

Animal Transgenesis and Cloning: Combined Development and Future Perspectives

Chapter © 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Cho, S.J., Cha, B.S., Kwon, O.S., Lim, J., Shin, D.M., Han, D.W., Ishitani, T., Jho, E.H., Fornace, A.J., and Cha, H.J. (2017). Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochim Biophys Acta 1863, 1013–1022.

    Article  CAS  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  Google Scholar 

  • Du, X., Guo, Z., Fan, W., Hai, T., Gao, F., Li, P., Qin, Y., Chen, C., Han, Z., Ren, J., et al. (2021). Establishment of a humanized swine model for COVID-19. Cell Discov 7, 70.

    Article  CAS  Google Scholar 

  • Fan, Z., Liu, Z., Xu, K., Wu, T., Ruan, J., Zheng, X., Bao, S., Mu, Y., Sonstegard, T., and Li, K. (2021). Long-term, multidomain analyses to identify the breed and allelic effects in MSTN-edited pigs to overcome lameness and sustainably improve nutritional meat production. Sci China Life Sci doi: https://doi.org/10.1007/s11427-020-1927-9.

  • Filipponi, D., Muller, J., Emelyanov, A., and Bulavin, D.V. (2013). Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 24, 528–541.

    Article  CAS  Google Scholar 

  • Hai, T., Teng, F., Guo, R., Li, W., and Zhou, Q. (2014). One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24, 372–375.

    Article  CAS  Google Scholar 

  • Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S. (2014). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012–1019.

    Article  CAS  Google Scholar 

  • Lamas-Toranzo, I., Guerrero-Sánchez, J., Miralles-Bover, H., Alegre-Cid, G., Pericuesta, E., and Bermejo-Álvarez, P. (2017). CRISPR is knocking on barn door. Reprod Dom Anim 52, 39–47.

    Article  CAS  Google Scholar 

  • Li, G., Liu, Y.G., and Chen, Y. (2019). Genome-editing technologies: the gap between application and policy. Sci China Life Sci 62, 1534–1538.

    Article  Google Scholar 

  • Li, X., Tremoleda, J.L., and Allen, W.R. (2003). Effect of the number of passages of fetal and adult fibroblasts on nuclear remodelling and first embryonic division in reconstructed horse oocytes after nuclear transfer. Reproduction 125, 535–542.

    Article  CAS  Google Scholar 

  • Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., et al. (2014). Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24, 501–504.

    Article  CAS  Google Scholar 

  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261.

    Article  CAS  Google Scholar 

  • Liang, Z., Chen, K., Zhang, Y., Liu, J., Yin, K., Qiu, J.L., and Gao, C. (2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nat Protoc 13, 413–430.

    Article  CAS  Google Scholar 

  • Liang, Z., Wu, Y., Guo, Y., Liu, Y., Ma, L., and Wu, Y. (2021). Bifunctional selection markers assist segregation of transgene-free, genome-edited mutants. Sci China Life Sci 64, 1567–1570.

    Article  CAS  Google Scholar 

  • Liu, Q., Jiao, X., Meng, X., Wang, C., Xu, C., Tian, Z., Xie, C., Li, G., Li, J., Yu, H., et al. (2021). FED: a web tool for foreign element detection of genome-edited organism. Sci China Life Sci 64, 167–170.

    Article  Google Scholar 

  • Magnani, L., Lee, K., Fodor, W.L., Machaty, Z., and Cabot, R.A. (2008). Developmental capacity of porcine nuclear transfer embryos correlate with levels of chromatin-remodeling transcripts in donor cells. Mol Reprod Dev 75, 766–776.

    Article  CAS  Google Scholar 

  • Mastromonaco, G.F., Perrault, S.D., Betts, D.H., and King, W.A. (2006). Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev Biol 6, 41.

    Article  Google Scholar 

  • Norris, A.L., Lee, S.S., Greenlees, K.J., Tadesse, D.A., Miller, M.F., and Lombardi, H.A. (2020). Template plasmid integration in germline genome-edited cattle. Nat Biotechnol 38, 163–164.

    Article  CAS  Google Scholar 

  • Ramakrishna, S., Kwaku Dad, A.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24, 1020–1027.

    Article  CAS  Google Scholar 

  • Ruan, D., Peng, J., Wang, X., Ouyang, Z., Zou, Q., Yang, Y., Chen, F., Ge, W., Wu, H., Liu, Z., et al. (2018). XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer. Stem Cell Rep 10, 494–508.

    Article  CAS  Google Scholar 

  • Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., and Lee, G.J. (2016). Site-directed mutagenesis in Petunia×hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep 35, 1535–1544.

    Article  CAS  Google Scholar 

  • Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K., and Mark Cigan, A. (2016). Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7, 13274.

    Article  CAS  Google Scholar 

  • Wei, Y., Gao, Q., Niu, P., Xu, K., Qiu, Y., Hu, Y., Liu, S., Zhang, X., Yu, M., Liu, Z., et al. (2019). Integrative proteomic and phosphoproteomic profiling of testis from Wip1 phosphatase-knockout mice: insights into mechanisms of reduced fertility. Mol Cell Proteomics 18, 216–230.

    Article  CAS  Google Scholar 

  • Whitworth, K.M., Rowland, R.R.R., Ewen, C.L., Trible, B.R., Kerrigan, M. A., Cino-Ozuna, A.G., Samuel, M.S., Lightner, J.E., McLaren, D.G., Mileham, A.J., et al. (2016). Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34, 20–22.

    Article  CAS  Google Scholar 

  • Woo, J.W., Kim, J., Kwon, S.I., Corvalán, C., Cho, S.W., Kim, H., Kim, S. G., Kim, S.T., Choe, S., and Kim, J.S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162–1164.

    Article  CAS  Google Scholar 

  • Xu, K., Zhou, Y., Mu, Y., Liu, Z., Hou, S., Xiong, Y., Fang, L., Ge, C., Wei, Y., Zhang, X., et al. (2020). CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. eLife 9, e57132.

    Article  CAS  Google Scholar 

  • Yan, S., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., Lai, C., et al. (2018). A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173, 989–1002.e13.

    Article  CAS  Google Scholar 

  • Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., Aach, J., Shrock, E., Xu, W., Poci, J., et al. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104.

    Article  CAS  Google Scholar 

  • Zheng, Q., Lin, J., Huang, J., Zhang, H., Zhang, R., Zhang, X., Cao, C., Hambly, C., Qin, G., Yao, J., et al. (2017). Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc Natl Acad Sci USA 114, E9474–E9482.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, X., Xin, J., Fan, N., Zou, Q., Huang, J., Ouyang, Z., Zhao, Y., Zhao, B., Liu, Z., Lai, S., et al. (2015). Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci 72, 1175–1184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32072690), the Major Scientific Research Tasks for Scientific and Technological Innovation Projects of the Chinese Academy of Agricultural Sciences (CAAS-ZDRW202006), the Science, Technology and Innovation Commission of Shenzhen Municipality (JCKYZDKY202009), the National Transgenic Breeding Project (2016ZX08010-004), the National Transgenic Breeding Project (2016ZX08006-001), and the Agricultural Science and Technology Innovation Program (ASTIP-IAS05).

Author information

Author notes
  1. Contributed equally to this work

Authors and Affiliations

  1. State Key Laboratory of Animal Nutrition and Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs of China, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China

    Kui Xu, Xiuling Zhang, Zhiguo Liu, Jinxue Ruan, Changjiang Xu, Jingjing Che, Ziyao Fan, Yulian Mu & Kui Li

  2. Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China

    Kui Xu & Kui Li

  3. Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, China

    Jinxue Ruan

Authors
  1. Kui Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xiuling Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhiguo Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jinxue Ruan
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Changjiang Xu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Jingjing Che
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Ziyao Fan
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Yulian Mu
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Kui Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Yulian Mu or Kui Li.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Supplementary material, approximately 1.47 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Zhang, X., Liu, Z. et al. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. Sci. China Life Sci. 65, 1535–1546 (2022). https://doi.org/10.1007/s11427-021-2058-2

Download citation

  • Received: 25 November 2021

  • Accepted: 06 January 2022

  • Published: 28 January 2022

  • Issue Date: August 2022

  • DOI: https://doi.org/10.1007/s11427-021-2058-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • dual-sgRNA
  • CRISPR-Cas9 ribonucleoproteins
  • transgene-free
  • without monoclonal selection
  • cloned pig
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature