Skip to main content
Log in

Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The gut microbiota is involved in host responses to high altitude. However, the dynamics of intestinal microecology and their association with altitude-related illness are poorly understood. Here, we used a rat model of hypobaric hypoxia challenge to mimic plateau exposure and monitored the gut microbiome, short-chain fatty acids (SCFAs), and bile acids (BAs) over 28 d. We identified weight loss, polycythemia, and pathological cardiac hypertrophy in hypoxic rats, accompanied by a large compositional shift in the gut microbiota, which is mainly driven by the bacterial families of Prevotellaceae, Porphyromonadaceae, and Streptococcaceae. The aberrant gut microbiota was characterized by increased abundance of the Parabacteroides, Alistipes, and Lactococcus genera and a larger Bacteroides to Prevotella ratio. Trans-omics analyses showed that the gut microbiome was significantly correlated with the metabolic abnormalities of SCFAs and BAs in feces, suggesting an interaction network remodeling of the microbiome-metabolome after the hypobaric hypoxia challenge. Interestingly, the transplantation of fecal microbiota significantly increased the diversity of the gut microbiota, partially inhibited the increased abundance of the Bacteroides and Alistipes genera, restored the decrease of plasma propionate, and moderately ameliorated cardiac hypertrophy in hypoxic rats. Our results provide an insight into the longitudinal changes in intestinal microecology during the hypobaric hypoxia challenge. Abnormalities in the gut microbiota and microbial metabolites contribute to the development of high-altitude heart disease in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adak, A., Maity, C., Ghosh, K., Pati, B.R., and Mondal, K.C. (2013). Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol 58, 523–528.

    Article  CAS  Google Scholar 

  • Adak, A., Ghosh, and Mondal, K.C. (2014a). Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia. Indian J Exp Biol 52, 1098–1105.

    PubMed  Google Scholar 

  • Adak, A., Maity, C., Ghosh, K., and Mondal, K.C. (2014b). Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia. Z Gastroenterol 52, 180–186.

    Article  CAS  PubMed  Google Scholar 

  • Adrogue, J.V., Sharma, S., Ngumbela, K., Essop, M.F., and Taegtmeyer, H. (2005). Acclimatization to chronic hypobaric hypoxia is associated with a differential transcriptional profile between the right and left ventricle. Mol Cell Biochem 278, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Amir, A., McDonald, D., Navas-Molina, J.A., Kopylova, E., Morton, J.T., Zech Xu, Z., Kightley, E.P., Thompson, L.R., Hyde, E.R., Gonzalez, A., et al. (2017). Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand, A.C., Sashindran, V.K., and Mohan, L. (2006). Gastrointestinal problems at high altitude. Trop Gastroenterol 27, 147–153.

    CAS  PubMed  Google Scholar 

  • Bartolomaeus, H., Balogh, A., Yakoub, M., Homann, S., Markó, L., Höges, S., Tsvetkov, D., Krannich, A., Wundersitz, S., Avery, E.G., et al. (2019). Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139, 1407–1421.

    Article  CAS  PubMed  Google Scholar 

  • Bartsch, P., and Gibbs, J.S.R. (2007). Effect of altitude on the heart and the lungs. Circulation 116, 2191–2202.

    Article  PubMed  Google Scholar 

  • Basnyat, B., and Murdoch, D.R. (2003). High-altitude illness. Lancet 361, 1967–1974.

    Article  PubMed  Google Scholar 

  • Biswas, H.M., Saha, R.C., and Biswas, N.M. (1996). Hematologic and body fluid changes during simulated high altitude exposure in naproxen-treated rats. Jpn J Physiol 46, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., AlGhalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37, 852–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bu, D., Zhang, X., Ma, L., Park, T., Wang, L., Wang, M., Xu, J., and Yu, Z. (2020). Repeated inoculation of young calves with rumen microbiota does not significantly modulate the rumen prokaryotic microbiota consistently but decreases diarrhea. Front Microbiol 11, 1403.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castiglione, V., Aimo, A., Vergaro, G., Saccaro, L., Passino, C., and Emdin, M. (2021). Biomarkers for the diagnosis and management of heart failure. Heart Fail Rev doi: https://doi.org/10.1007/s10741-021-10105-w.

  • Cernecka, H., Doka, G., Srankova, J., Pivackova, L., Malikova, E., Galkova, K., Kyselovic, J., Krenek, P., and Klimas, J. (2016). Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. Eur J Pharmacol 791, 244–253.

    Article  CAS  PubMed  Google Scholar 

  • Chawla, S., Rahar, B., Tulswani, R., and Saxena, S. (2020). Preventive preclinical efficacy of intravenously administered sphingosine-1-phosphate (S1P) in strengthening hypoxia adaptive responses to acute and sub-chronic hypobaric hypoxia. Eur J Pharmacol 870, 172877.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X.F., Chen, X., and Tang, X. (2020). Short-chain fatty acid, acylation and cardiovascular diseases. Clin Sci 134, 657–676.

    Article  CAS  Google Scholar 

  • Chicco, A.J., Le, C.H., Gnaiger, E., Dreyer, H.C., Muyskens, J.B., D’Alessandro, A., Nemkov, T., Hocker, A.D., Prenni, J.E., Wolfe, L. M., et al. (2018). Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from altitudeomics. J Biol Chem 293, 6659–6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppel, J., Hennis, P., Gilbert-Kawai, E., and Grocott, M.P. (2015). The physiological effects of hypobaric hypoxia versus normobaric hypoxia: a systematic review of crossover trials. Extrem Physiol Med 4, 1–20.

    Article  Google Scholar 

  • Costea, P.I., Hildebrand, F., Arumugam, M., Bäckhed, F., Blaser, M.J., Bushman, F.D., de Vos, W.M., Ehrlich, S.D., Fraser, C.M., Hattori, M., et al. (2018). Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 3, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Cui, X., Ye, L., Li, J., Jin, L., Wang, W., Li, S., Bao, M., Wu, S., Li, L., Geng, B., et al. (2018). Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep 8, 635.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalile, B., Van Oudenhove, L., Vervliet, B., and Verbeke, K. (2019). The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16, 461–478.

    Article  PubMed  Google Scholar 

  • Ding, S., Yan, W., Fang, J., Jiang, H., and Liu, G. (2021). Potential role of lactobacillus plantarum in colitis induced by dextran sulfate sodium through altering gut microbiota and host metabolism in murine model. Sci China Life Sci 64, 1906–1916.

    Article  CAS  PubMed  Google Scholar 

  • Doggrell, S.A., and Brown, L. (1998). Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39, 89–105.

    Article  CAS  PubMed  Google Scholar 

  • Dünnwald, T., Gatterer, H., Faulhaber, M., Arvandi, M., and Schobersberger, W. (2019). Body composition and body weight changes at different altitude levels: a systematic review and meta-analysis. Front Physiol 10, 430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eblimit, Z., Thevananther, S., Karpen, S.J., Taegtmeyer, H., Moore, D.D., Adorini, L., Penny, D.J., and Desai, M.S. (2018). Tgr5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther 36, e12462.

    Article  PubMed  Google Scholar 

  • Fan, Y., and Pedersen, O. (2020). Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19, 55–71.

    Article  PubMed  Google Scholar 

  • Funabashi, M., Grove, T.L., Wang, M., Varma, Y., McFadden, M.E., Brown, L.C., Guo, C., Higginbottom, S., Almo, S.C., and Fischbach, M. A. (2020). A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, X.T., Ettinger, G., Huang, C.X., Burton, J.P., Haist, J.V., Rajapurohitam, V., Sidaway, J.E., Martin, G., Gloor, G.B., Swann, J. R., et al. (2014). Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Failure 7, 491–499.

    Article  PubMed  Google Scholar 

  • Genovese, A., De Alfieri, W., Chiarello, M., Latte, S., Polverino, W., and Condorelli, M. (1981). Development of cardiac hypertrophy in rats exposed to acute hypobaric hypoxia.—Studies with protein synthesis inhibitors. Exp Pathol 20, 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Goetze, J.P., Bruneau, B.G., Ramos, H.R., Ogawa, T., de Bold, M.K., and de Bold, A.J. (2020). Cardiac natriuretic peptides. Nat Rev Cardiol 17, 698–717.

    Article  CAS  PubMed  Google Scholar 

  • Grocott, M., Montgomery, H., and Vercueil, A. (2007). High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit Care 11, 203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Calabrés, E., Ortega-Hernández, A., Modrego, J., Gómez-Gordo, R., Caro-Vadillo, A., Rodríguez-Bobada, C., González, P., and Gómez-Garre, D. (2020). Gut microbiota profile identifies transition from compensated cardiac hypertrophy to heart failure in hypertensive rats. Hypertension 76, 1545–1554.

    Article  PubMed  Google Scholar 

  • Hackett, P.H., and Roach, R.C. (2001). High-altitude illness. N Engl J Med 345, 107–114.

    Article  CAS  PubMed  Google Scholar 

  • Hamad, N., and Travis, S.P.L. (2006). Weight loss at high altitude: pathophysiology and practical implications. Eur J Gastroenterol Hepatol 18, 5–10.

    Article  PubMed  Google Scholar 

  • Han, N., Pan, Z., Huang, Z., Chang, Y., Hou, F., Liu, G., Yang, R., and Bi, Y. (2020). Effects of myeloid Hif-1β deletion on the intestinal microbiota in mice under environmental hypoxia. Infect Immun 89.

  • Hanafi, N.I., Mohamed, A.S., Sheikh Abdul Kadir, S.H., and Othman, M. H.D. (2018). Overview of bile acids signaling and perspective on the signal of ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules 8, 159.

    Article  PubMed Central  Google Scholar 

  • Heinemeier, K.M., Olesen, J.L., Haddad, F., Schjerling, P., Baldwin, K.M., and Kjaer, M. (2009). Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J Appl Physiol 106, 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Heinonen, I., Luotolahti, M., Vuolteenaho, O., Nikinmaa, M., Saraste, A., Hartiala, J., Koskenvuo, J., Knuuti, J., and Arjamaa, O. (2014). Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans. J Transl Med 12, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, N.E., Stacey, M.J., and Woods, D.R. (2011). Energy at high altitude. J R Army Med Corps 157, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Z., Zhao, X., Liu, X., Zhao, L., Jia, Q., Shi, J., Xu, X., Hao, L., Xu, Z., Zhong, Q., et al. (2020). Impacts of the plateau environment on the gut microbiota and blood clinical indexes in han and tibetan individuals. mSystems 5, e00660–19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kar, D., and Bandyopadhyay, A. (2018). Targeting peroxisome proliferator activated receptor α (PPAR α) for the prevention of mitochondrial impairment and hypertrophy in cardiomyocytes. Cell Physiol Biochem 49, 245–259.

    Article  CAS  PubMed  Google Scholar 

  • Karl, J.P., Margolis, L.M., Madslien, E.H., Murphy, N.E., Castellani, J.W., Gundersen, Y., Hoke, A.V., Levangie, M.W., Kumar, R., Chakraborty, N., et al. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol 312, G559–G571.

    Article  PubMed  Google Scholar 

  • Karl, J.P., Hatch, A.M., Arcidiacono, S.M., Pearce, S.C., Pantoja-Feliciano, I.G., Doherty, L.A., and Soares, J.W. (2018a). Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 9, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karl, J.P., Berryman, C.E., Young, A.J., Radcliffe, P.N., Branck, T.A., Pantoja-Feliciano, I.G., Rood, J.C., and Pasiakos, S.M. (2018b). Associations between the gut microbiota and host responses to high altitude. Am J Physiol Gastrointest Liver Physiol 315, G1003–G1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karoor, V., Strassheim, D., Sullivan, T., Verin, A., Umapathy, N.S., Dempsey, E.C., Frank, D.N., Stenmark, K.R., and Gerasimovskaya, E. (2021). The short-chain fatty acid butyrate attenuates pulmonary vascular remodeling and inflammation in hypoxia-induced pulmonary hypertension. Int J Mol Sci 22, 9916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna, K., Mishra, K.P., Ganju, L., Kumar, B., and Singh, S.B. (2018). High-altitude-induced alterations in gut-immune axis: a review. Int Rev Immunol 37, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • Khanna, K., Mishra, K.P., Chanda, S., Ganju, L., Singh, S.B., and Kumar, B. (2020). Effect of synbiotics on amelioration of intestinal inflammation under hypobaric hypoxia. High Alt Med Biol 22, 32–44.

    Article  PubMed  Google Scholar 

  • Kim, M.G., Jo, K., Chang, Y.B., Suh, H.J., and Hong, K.B. (2020). Changes in the gut microbiome after galacto-oligosaccharide administration in loperamide-induced constipation. J Pers Med 10, 161.

    Article  PubMed Central  Google Scholar 

  • Kleessen, B., Schroedl, W., Stueck, M., Richter, A., Rieck, O., and Krueger, M. (2005). Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med Sci Sports Exerc 37, 1313–1318.

    Article  PubMed  Google Scholar 

  • Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., et al. (2018). Best practices for analysing microbiomes. Nat Rev Microbiol 16, 410–422.

    Article  CAS  PubMed  Google Scholar 

  • Koh, A., De Vadder, F., Kovatcheva-Datchary, P., and Bäckhed, F. (2016). From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345.

    Article  CAS  PubMed  Google Scholar 

  • Kong, P., Christia, P., and Frangogiannis, N.G. (2014). The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71, 549–574.

    Article  CAS  PubMed  Google Scholar 

  • Kummen, M., Mayerhofer, C.C.K., Vestad, B., Broch, K., Awoyemi, A., Storm-Larsen, C., Ueland, T., Yndestad, A., Hov, J.R., and Trøseid, M. (2018). Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol 71, 1184–1186.

    Article  PubMed  Google Scholar 

  • Kundu, S., Bansal, S., Muthukumarasamy, K.M., Sachidanandan, C., Motiani, R.K., and Bajaj, A. (2017). Deciphering the role of hydrophobic and hydrophilic bile acids in angiogenesis using in vitro and in vivo model systems. Medchemcomm 8, 2248–2257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, V., Su, J., Hsu, A., Gross, G.J., Salzman, N.H., and Baker, J.E. (2016). Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE 11, e0160840.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan, D., Ji, W., Lin, B., Chen, Y., Huang, C., Xiong, X., Fu, M., Mipam, T. D., Ai, Y., Zeng, B., et al. (2017). Correlations between gut microbiota community structures of tibetans and geography. Sci Rep 7, 16982.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavelle, A., and Sokol, H. (2020). Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 17, 223–237.

    Article  PubMed  Google Scholar 

  • Li, H., Qu, J., Li, T., Wirth, S., Zhang, Y., Zhao, X., and Li, X. (2018). Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl Microbiol Biotechnol 102, 6739–6751.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Dan, Z., Gesang, L., Wang, H., Zhou, Y., Du, Y., Ren, Y., Shi, Y., and Nie, Y. (2016). Comparative analysis of gut microbiota of native tibetan and han populations living at different altitudes. PLoS ONE 11, e0155863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, L., and Zhao, X. (2015). Comparative analyses of fecal microbiota in tibetan and chinese han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep 5, 14682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Hu, J., Nie, Q., Chang, X., Fang, Q., Xie, J., Li, H., and Nie, S. (2021). Hypoglycemic mechanism of polysaccharide from cyclocarya paliurus leaves in type 2 diabetic rats by gut microbiota and host metabolism alteration. Sci China Life Sci 64, 117–132.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., An, Y., Tang, H., and Wang, Y. (2019). Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem 67, 3624–3632.

    Article  CAS  PubMed  Google Scholar 

  • Lordan, C., Thapa, D., Ross, R.P., and Cotter, P.D. (2020). Potential for enriching next-generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes 11, 1–20.

    Article  PubMed  Google Scholar 

  • Lucking, E.F., O’Connor, K.M., Strain, C.R., Fouhy, F., Bastiaanssen, T.F. S., Burns, D.P., Golubeva, A.V., Stanton, C., Clarke, G., Cryan, J.F., et al. (2018). Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. Ebiomedicine 38, 191–205.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, Y., Ma, S., Chang, L., Wang, H., Ga, Q., Ma, L., Bai, Z., Shen, Y., and Ge, R.L. (2019). Gut microbiota adaptation to high altitude in indigenous animals. Biochem Biophysl Res Commun 516, 120–126.

    Article  CAS  Google Scholar 

  • Maity, C., Adak, A., Ghosh, K., Pati, B.R., and Mondal, K.C. (2013). Hypobaric-hypoxia induces alteration in microbes and microbes-associated enzyme profile in rat colonic samples. Biomed Environ Sci 26, 869–873.

    CAS  PubMed  Google Scholar 

  • Masella, A.P., Bartram, A.K., Truszkowski, J.M., Brown, D.G., and Neufeld, J.D. (2012). PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinf 13, 31.

    Article  CAS  Google Scholar 

  • Mayerhofer, C.C.K., Ueland, T., Broch, K., Vincent, R.P., Cross, G.F., Dahl, C.P., Aukrust, P., Gullestad, L., Hov, J.R., and Trøseid, M. (2017). Increased secondary/primary bile acid ratio in chronic heart failure. J Cardiac Fail 23, 666–671.

    Article  CAS  Google Scholar 

  • Mazel, F. (2019). Living the high life: could gut microbiota matter for adaptation to high altitude? Mol Ecol 28, 2119–2121.

    Article  PubMed  Google Scholar 

  • Murray, A.J. (2016). Energy metabolism and the high-altitude environment. Exp Physiol 101, 23–27.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., and Sadoshima, J. (2018). Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15, 387–407.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, K., Tajima, F., Itoh, H., Nakata, Y., Osada, H., Hama, N., Nakagawa, O., Nakao, K., Kawai, T., Takishima, K., et al. (2001). Changes in atrial natriuretic peptide and brain natriuretic peptide associated with hypobaric hypoxia-induced pulmonary hypertension in rats. Virchows Arch 439, 808–817.

    Article  CAS  PubMed  Google Scholar 

  • O’Connor, K.M., Lucking, E.F., Golubeva, A.V., Strain, C.R., Fouhy, F., Cenit, M.C., Dhaliwal, P., Bastiaanssen, T.F.S., Burns, D.P., Stanton, C., et al. (2019). Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. Ebiomedicine 44, 618–638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliphant, K., and Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, Z.Y., Chang, Y.X., Han, N., Hou, F.Y., Lee, B.J.Y., Zhi, F.C., Yang, R. F., and Bi, Y.J. (2021). Short-term high-dose gavage of hydroxychloroquine changes gut microbiota but not the intestinal integrity and immunological responses in mice. Life Sci 264, 118450.

    Article  CAS  PubMed  Google Scholar 

  • Pena, E., Brito, J., El Alam, S., and Siques, P. (2020). Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. Int J Mol Sci 21, 6421.

    Article  CAS  PubMed Central  Google Scholar 

  • Pham, K., Parikh, K., and Heinrich, E.C. (2021). Hypoxia and inflammation: insights from high-altitude physiology. Front Physiol 12, 676782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Precup, G., and Vodnar, D.C. (2019). Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. Br J Nutr 122, 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Raghuvanshi, R., Vasco, K., Vázquez-Baeza, Y., Jiang, L., Morton, J.T., Li, D., Gonzalez, A., DeRight Goldasich, L., Humphrey, G., Ackermann, G., et al. (2020). High-resolution longitudinal dynamics of the cystic fibrosis sputum microbiome and metabolome through antibiotic therapy. mSystems 5, e00292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh, K.G., Suzuki, R., Maeda, H., Yamamoto, M., Yutong, X., and Sasaguri, S. (2005). Hydrophilic bile salt ursodeoxycholic acid protects myocardium against reperfusion injury in a PI3K/Akt dependent pathway. J Mol Cell Cardiol 39, 766–776.

    Article  CAS  PubMed  Google Scholar 

  • Rani, S., Sreenivasaiah, P.K., Kim, J.O., Lee, M.Y., Kang, W.S., Kim, Y.S., Ahn, Y., Park, W.J., Cho, C., and Kim, D.H. (2017). Tauroursodeoxycholic acid (TUDCA) attenuates pressure overload-induced cardiac remodeling by reducing endoplasmic reticulum stress. PLoS ONE 12, e0176071.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinaldi, B., Donniacuo, M., Sodano, L., Gritti, G., Signoriello, S., Parretta, E., Berrino, L., Urbanek, K., Capuano, A., and Rossi, F. (2013). Effects of sildenafil on the gastrocnemius and cardiac muscles of rats in a model of prolonged moderate exercise training. PLoS ONE 8, e69954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivard, A.L., Steer, C.J., Kren, B.T., Rodrigues, C.M.P., Castro, R.E., Bianco, R.W., and Low, W.C. (2007). Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat. Am J Chin Med 35, 279–295.

    Article  CAS  PubMed  Google Scholar 

  • Roager, H.M., Hansen, L.B.S., Bahl, M.I., Frandsen, H.L., Carvalho, V., Gøbel, R.J., Dalgaard, M.D., Plichta, D.R., Sparholt, M.H., Vestergaard, H., et al. (2016). Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut. Nat Microbiol 1, 1–9.

    Article  Google Scholar 

  • Rodríguez-Morató, J., and Matthan, N.R. (2020). Nutrition and gastrointestinal microbiota, microbial-derived secondary bile acids, and cardiovascular disease. Curr Atheroscler Rep 22, 47.

    Article  PubMed  Google Scholar 

  • Rooks, M.G., and Garrett, W.S. (2016). Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell, W.R., Duncan, S.H., Scobbie, L., Duncan, G., Cantlay, L., Calder, A.G., Anderson, S.E., and Flint, H.J. (2013). Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57, 523–535.

    Article  CAS  PubMed  Google Scholar 

  • Sekirov, I., Russell, S.L., Antunes, L.C.M., and Finlay, B.B. (2010). Gut microbiota in health and disease. Physiol Rev 90, 859–904.

    Article  CAS  PubMed  Google Scholar 

  • Shao, T., Zhao, C., Li, F., Gu, Z., Liu, L., Zhang, L., Wang, Y., He, L., Liu, Y., Liu, Q., et al. (2018). Intestinal HIF-1α deletion exacerbates alcoholic liver disease by inducing intestinal dysbiosis and barrier dysfunction. J Hepatol 69, 886–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao, X., Dong, X., Cai, J., Tang, C., Xie, K., Yan, Z., Luo, E., and Jing, D. (2020). Oxygen enrichment ameliorates cardiorespiratory alterations induced by chronic high-altitude hypoxia in rats. Front Physiol 11, 616145.

    Article  PubMed  Google Scholar 

  • Sheppard, R.L., Swift, J.M., Hall, A., and Mahon, R.T. (2018). The influence of CO2 and exercise on hypobaric hypoxia induced pulmonary edema in rats. Front Physiol 9, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šket, R., Treichel, N., Debevec, T., Eiken, O., Mekjavic, I., Schloter, M., Vital, M., Chandler, J., Tiedje, J.M., Murovec, B., et al. (2017a). Hypoxia and inactivity related physiological changes (constipation, inflammation) are not reflected at the level of gut metabolites and butyrate producing microbial community: the planhab study. Front Physiol 8, 250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šket, R., Treichel, N., Kublik, S., Debevec, T., Eiken, O., Mekjavić, I., Schloter, M., Vital, M., Chandler, J., Tiedje, J.M., et al. (2017b). Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: the planhab randomized trial pilot study. PLoS ONE 12, e0188556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Šket, R., Debevec, T., Kublik, S., Schloter, M., Schoeller, A., Murovec, B., Vogel Mikuš, K., Makuc, D., Pečnik, K., Plavec, J., et al. (2018). Intestinal metagenomes and metabolomes in healthy young males: inactivity and hypoxia generated negative physiological symptoms precede microbial dysbiosis. Front Physiol 9, 198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, Z., Cai, Y., Lao, X., Wang, X., Lin, X., Cui, Y., Kalavagunta, P.K., Liao, J., Jin, L., Shang, J., et al. (2019). Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (bsh) genes based on worldwide human gut microbiome. Microbiome 7, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strapazzon, G., Vezzaro, R., Hofer, G., Dal Cappello, T., Procter, E., Balkenhol, K., Platzgummer, S., and Brugger, H. (2015). Factors associated with B-lines after exposure to hypobaric hypoxia. Eur Heart J Cardiovasc Imag 16, 1241–1246.

    Article  Google Scholar 

  • Strapazzon, G., Pun, M., Cappello, T.D., Procter, E., Lochner, P., Brugger, H., and Piccoli, A. (2017). Total body water dynamics estimated with bioelectrical impedance vector analysis and b-type natriuretic peptide after exposure to hypobaric hypoxia: a field study. High Alt Med Biol 18, 384–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., et al. (2018). Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 24, 1919–1929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., Zhang, J., Zhao, A., Li, W., Feng, Q., and Wang, R. (2020). Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia. PLoS ONE 15, e0230197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, T.A., Martins, F.M., and Nachman, M.W. (2018). Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 28, 2378–2390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura, N., Ogawa, Y., Chusho, H., Nakamura, K., Nakao, K., Suda, M., Kasahara, M., Hashimoto, R., Katsuura, G., Mukoyama, M., et al. (2000). Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97, 4239–4244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, T.W.H., Chen, H.C., Chen, C.Y., Yen, C.Y.T., Lin, C.J., Prajnamitra, R.P., Chen, L.L., Ruan, S.C., Lin, J.H., Lin, P.J., et al. (2019). Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 139, 647–659.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y.M., Guan, Y., Tian, S.Y., Yuan, F., Zhang, L., and Zhang, Y. (2018). Short-term chronic intermittent hypobaric hypoxia alters gut microbiota composition in rats. Biomed Environ Sci 31, 898–901.

    PubMed  Google Scholar 

  • Toshner, M.R., Thompson, A.A.R., Irving, J.B., Baillie, J.K., Morton, J.J., and Peacock, A.J. (2008). Nt-proBNP does not rise on acute ascent to high altitude. High Alt Med Biol 9, 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Vasavan, T., Ferraro, E., Ibrahim, E., Dixon, P., Gorelik, J., and Williamson, C. (2018). Heart and bile acids—clinical consequences of altered bile acid metabolism. Biochim Biophys Acta 1864, 1345–1355.

    Article  CAS  Google Scholar 

  • Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., and Knight, R. (2013). EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 2047–2217.

    Article  Google Scholar 

  • Villafuerte, F.C., and Corante, N. (2016). Chronic mountain sickness: clinical aspects, etiology, management, and treatment. High Alt Med Biol 17, 61–69.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Haehling, S., Schefold, J.C., Jankowska, E.A., Springer, J., Vazir, A., Kalra, P.R., Sandek, A., Fauler, G., Stojakovic, T., Trauner, M., et al. (2012). Ursodeoxycholic acid in patients with chronic heart failure. J Am Coll Cardiol 59, 585–592.

    Article  CAS  PubMed  Google Scholar 

  • Wahlström, A., Sayin, S.I., Marschall, H.U., and Bäckhed, F. (2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24, 41–50.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhang, J., Lin, X., Wang, Y., Wu, X., Yang, F., Gao, W., Zhang, Y., Sun, J., Jiang, C., et al. (2021a). DCA-TGR5 signaling activation alleviates inflammatory response and improves cardiac function in myocardial infarction. J Mol Cell Cardiol 151, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R.X., Henen, M.A., Lee, J.S., Vögeli, B., and Colgan, S.P. (2021b). Microbiota-derived butyrate is an endogenous HIF prolyl hydroxylase inhibitor. Gut Microbes 13, 1938380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., and Qian, P.Y. (2009). Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4, e7401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Liu, F., Zhang, G., Su, Y., Sun, X., Chen, Q., Wang, C., Fu, H., He, Y., Zhu, X., et al. (2021c). Gut microbiome alterations and its link to corticosteroid resistance in immune thrombocytopenia. Sci China Life Sci 64, 766–783.

    Article  CAS  PubMed  Google Scholar 

  • West, J.B. (2012). High-altitude medicine. Am J Respir Crit Care Med 186, 1229–1237.

    Article  PubMed  Google Scholar 

  • Wu, Q., Liang, X., Wang, K., Lin, J., Wang, X., Wang, P., Zhang, Y., Nie, Q., Liu, H., Zhang, Z., et al. (2021a). Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab 33, 1988–2003.e7.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Q., Sun, L., Hu, X., Wang, X., Xu, F., Chen, B., Liang, X., Xia, J., Wang, P., Aibara, D., et al. (2021b). Suppressing the intestinal farnesoid X receptor/sphingomyelin phosphodiesterase 3 axis decreases atherosclerosis. J Clin Investigation 131, e142865.

    Article  CAS  Google Scholar 

  • Wu, Y., Yao, Y., Dong, M., Xia, T., Li, D., Xie, M., Wu, J., Wen, A., Wang, Q., Zhu, G., et al. (2020). Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol 20, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Z.Z., Amir, A., Sanders, J., Zhu, Q., Morton, J.T., Bletz, M.C., Tripathi, A., Huang, S., McDonald, D., Jiang, L., et al. (2019). Calour: an interactive, microbe-centric analysis tool. mSystems 4.

  • Yang, W., Yu, T., Huang, X., Bilotta, A.J., Xu, L., Lu, Y., Sun, J., Pan, F., Zhou, J., Zhang, W., et al. (2020). Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat Commun 11, 4457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, B., Chen, H., Guo, X.Q., Hua, H., Guan, Y., Cui, F., Tian, Y.M., Zhang, H.X., Zhang, X.J., Zhang, Y., et al. (2021). CIHH protects the heart against left ventricular remodelling and myocardial fibrosis by balancing the renin-angiotensin system in SHR. Life Sci 278, 119540.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, H., Liu, M., Lan, Y., Sun, H., Mai, K., and Wan, M. (2020). Short-chain fatty acids promote intracellular bactericidal activity in head kidney macrophages from turbot (Scophthalmus maximus L.) via hypoxia inducible factor-1α. Front Immunol 11, 615536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Jiao, L., Liu, R., Zhang, Y., Ji, Q., Zhang, H., Gao, X., Ma, Y., and Shi, H.N. (2018). The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS ONE 13, e0203701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Zhang, Y., Wang, P., Zhang, S.Y., Dong, Y., Zeng, G., Yan, Y., Sun, L., Wu, Q., Liu, H., et al. (2019). Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab 30, 937–951.e5.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Yang, Y., Su, J., Zheng, X., Wang, C., Chen, S., Liu, J., Lv, Y., Fan, S., Zhao, A., et al. (2021). Age-related compositional changes and correlations of gut microbiome, serum metabolome, and immune factor in rats. Geroscience 43, 709–725.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Yao, Y., Li, D., Xu, H., Wu, J., Wen, A., Xie, M., Ni, Q., Zhang, M., Peng, G., et al. (2018). Characterization of the gut microbiota in six geographical populations of Chinese rhesus macaques (Macaca mulatta), implying an adaptation to high-altitude environment. Microb Ecol 76, 565–577.

    Article  PubMed  Google Scholar 

  • Zungu, M., Young, M.E., Stanley, W.C., and Essop, M.F. (2008). Expression of mitochondrial regulatory genes parallels respiratory capacity and contractile function in a rat model of hypoxia-induced right ventricular hypertrophy. Mol Cell Biochem 318, 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81790632, 31970863, and 31970088) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2020YFA0509600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yujing Bi, Zhenjiang Zech Xu or Ruifu Yang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. All animal procedures were carried out in accordance with the Declaration of the National Institutes of Health Guide and Use of Laboratory Animals and approved by the animal care and use committee of the Beijing Institute of Microbiology and Epidemiology (No. IACUC-DWZX-2017-005).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Hu, Y., Huang, Z. et al. Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci. China Life Sci. 65, 2093–2113 (2022). https://doi.org/10.1007/s11427-021-2056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2056-1

Keywords

Navigation