Skip to main content
Log in

VGLUT3 neurons in median raphe control the efficacy of spatial memory retrieval via ETV4 regulation of VGLUT3 transcription

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The raphe nucleus is critical for feeding, rewarding and memory. However, how the heterogenous raphe neurons are molecularly and structurally organized to engage their divergent functions remains unknown. Here, we genetically target a subset of neurons expressing VGLUT3. VGLUT3 neurons control the efficacy of spatial memory retrieval by synapsing directly with parvalbumin-expressing GABA interneurons (PGIs) in the dentate gyrus. In a mouse model of Alzheimer’s disease (AD mice), VGLUT3→PGIs synaptic transmission is impaired by ETV4 inhibition of VGLUT3 transcription. ETV4 binds to a promoter region of VGLUT3 and activates VGLUT3 transcription in VGLUT3 neurons. Strengthening VGLUT3→PGIs synaptic transmission by ETV4 activation of VGLUT3 transcription upscales the efficacy of spatial memory retrieval in AD mice. This study reports a novel circuit and molecular mechanism underlying the efficacy of spatial memory retrieval via ETV4 inhibition of VGLUT3 transcription and hence provides a promising target for therapeutic intervention of the disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, D.D., Giacomini, D., Yang, S.M., Trinchero, M.F., Temprana, S. G., Büttner, K.A., Beltramone, N., and Schinder, A.F. (2016). A disynaptic feedback network activated by experience promotes the integration of new granule cells. Science 354, 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Arendt, T. (2009). Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118, 167–179.

    Article  PubMed  Google Scholar 

  • Augustin, I., Rosenmund, C., Südhof, T.C., and Brose, N. (1999). Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461.

    Article  CAS  PubMed  Google Scholar 

  • Bakker, A., Kirwan, C.B., Miller, M., and Stark, C.E.L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319, 1640–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannerman, D.M., Rawlins, J.N.P., McHugh, S.B., Deacon, R.M.J., Yee, B. K., Bast, T., Zhang, W.N., Pothuizen, H.H.J., and Feldon, J. (2004). Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28, 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Bellocchio, E.E., Reimer, R.J., Fremeau Jr., R.T., and Edwards, R.H. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957–960.

    Article  CAS  PubMed  Google Scholar 

  • Brzosko, Z., Mierau, S.B., and Paulsen, O. (2019). Neuromodulation of spike-timing-dependent plasticity: past, present, and future. Neuron 103, 563–581.

    Article  CAS  PubMed  Google Scholar 

  • Clelland, C.D., Choi, M., Romberg, C., Clemenson Jr., G.D., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, M., Zhang, Q., Wu, Z., Ma, T., He, A., Zhang, T., Ke, X., Yu, Q., Han, Y., and Lu, Y. (2020). Mossy cell synaptic dysfunction causes memory imprecision via miR-128 inhibition of STIM2 in Alzheimer’s disease mouse model. Aging Cell 19, e13144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy, A.M., Morales-Corraliza, J., Bermudez-Hernandez, K.M., Schaner, M.J., Magagna-Poveda, A., Mathews, P.M., and Scharfman, H.E. (2015). Entorhinal cortical defects in Tg2576 mice are present as early as 2–4 months of age. Neurobiol Aging 36, 134–148.

    Article  CAS  PubMed  Google Scholar 

  • Fidalgo, C., Conejo, N.M., González-Pardo, H., Lazo, P.S., and Arias, J.L. (2012). A role for dorsal and ventral hippocampus in response learning. Neurosci Res 73, 218–223.

    Article  CAS  PubMed  Google Scholar 

  • Fremeau, R.T., Burman, J., Qureshi, T., Tran, C.H., Proctor, J., Johnson, J., Zhang, H., Sulzer, D., Copenhagen, D.R., Storm-Mathisen, J., et al. (2002). The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99, 14488–14493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fremeau, R.T., Troyer, M.D., Pahner, I., Nygaard, G.O., Tran, C.H., Reimer, R.J., Bellocchio, E.E., Fortin, D., Storm-Mathisen, J., and Edwards, R.H. (2001). The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260.

    Article  CAS  PubMed  Google Scholar 

  • Fremeau, R.T., Voglmaier, S., Seal, R.P., and Edwards, R.H. (2004). VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27, 98–103.

    Article  CAS  PubMed  Google Scholar 

  • Ge, S., Goh, E.L.K., Sailor, K.A., Kitabatake, Y., Ming, G.L., and Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Isla, T., Price, J.L., McKeel Jr., D.W., Morris, J.C., Growdon, J.H., and Hyman, B.T. (1996). Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16, 4491–4500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gras, C., Herzog, E., Bellenchi, G.C., Bernard, V., Ravassard, P., Pohl, M., Gasnier, B., Giros, B., and El Mestikawy, S. (2002). A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22, 5442–5451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo, M.E. (2005). What is the function of hippocampal theta rhythm? —Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus 15, 936–949.

    Article  PubMed  Google Scholar 

  • Herzog, E., Bellenchi, G.C., Gras, C., Bernard, V., Ravassard, P., Bedet, C., Gasnier, B., Giros, B., and El Mestikawy, S. (2001). The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21, RC181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96, 3228–3233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijbers, W., Mormino, E.C., Wigman, S.E., Ward, A.M., Vannini, P., McLaren, D.G., Becker, J.A., Schultz, A.P., Hedden, T., Johnson, K.A., et al. (2014). Amyloid deposition is linked to aberrant entorhinal activity among cognitively normal older adults. J Neurosci 34, 5200–5210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humeau, Y., and Choquet, D. (2019). The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci 22, 1536–1543.

    Article  CAS  PubMed  Google Scholar 

  • Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wölfing, H., Chieng, B.C., Christie, M.D.J., Napier, I.A., et al. (2010). Dendritic function of Tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Jack, C.R., Knopman, D.S., Jagust, W.J., Shaw, L.M., Aisen, P.S., Weiner, M.W., Petersen, R.C., and Trojanowski, J.Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9, 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen, J.S., Wu, C.C., Redwine, J.M., Comery, T.A., Arias, R., Bowlby, M., Martone, R., Morrison, J.H., Pangalos, M.N., Reinhart, P.H., et al. (2006). Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103, 5161–5166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038.

    Article  CAS  PubMed  Google Scholar 

  • Kaneko, T., Fujiyama, F., and Hioki, H. (2002). Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444, 39–62.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, J., Hardenacke, K., Lenartz, D., Gruendler, T., Ullsperger, M., Bartsch, C., Mai, J.K., Zilles, K., Bauer, A., Matusch, A., et al. (2015). Deep brain stimulation of the nucleus basalis of Meynert in Alzheimer’s dementia. Mol Psychiatry 20, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Leutgeb, J.K., Leutgeb, S., Moser, M.B., and Moser, E.I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Chen, W., Pan, K., Li, H., Pang, P., Guo, Y., Shu, S., Cai, Y., Pei, L., Liu, D., et al. (2018). Serotonin receptor 2c-expressing cells in the ventral CA1 control attention via innervation of the Edinger-Westphal nucleus. Nat Neurosci 21, 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Chen, W., Yu, Q., Zhang, Q., Zhang, T., Huang, X., Li, H., He, A., Yu, H., Jing, W., et al. (2021). A circuit of mossy cells controls the efficacy of memory retrieval by Gria2I inhibition of Gria2. Cell Rep 34, 108741.

    Article  CAS  PubMed  Google Scholar 

  • Lisman, J., Cooper, K., Sehgal, M., and Silva, A.J. (2018). Memory formation depends on both synapse-specific modifications of synaptic strength and cell-specific increases in excitability. Nat Neurosci 21, 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Zhou, J., Li, Y., Hu, F., Lu, Y., Ma, M., Feng, Q., Zhang, J.E., Wang, D., Zeng, J., et al. (2014). Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elmquist, J.K., Lowell, B.B., Fanselow, M.S., Wilson, M.A., and Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94–99.

    Article  CAS  PubMed  Google Scholar 

  • Moro, E., and Lang, A.E. (2006). Criteria for deep-brain stimulation in Parkinson’s disease: review and analysis. Expert Rev Neurother 6, 1695–1705.

    Article  PubMed  Google Scholar 

  • Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K.S., McBain, C.J., et al. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L., and Tonegawa, S. (2008). Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319, 1260–1264.

    Article  CAS  PubMed  Google Scholar 

  • Nectow, A.R., Schneeberger, M., Zhang, H., Field, B.C., Renier, N., Azevedo, E., Patel, B., Liang, Y., Mitra, S., Tessier-Lavigne, M., et al. (2017). Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e11.

    Article  CAS  PubMed  Google Scholar 

  • Ni, B., Rosteck Paul R., J., Suzan Nadi, N., and Paul, S.M. (1994). Cloning and expression of a cDNA encoding a brain-specific Na(+)-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 91, 5607–5611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owe, S.G., Erisir, A., and Heggelund, P. (2013). Terminals of the major thalamic input to visual cortex are devoid of synapsin proteins. Neuroscience 243, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Pignatelli, M., Ryan, T.J., Roy, D.S., Lovett, C., Smith, L.M., Muralidhar, S., and Tonegawa, S. (2019). Engram cell excitability state determines the efficacy of memory retrieval. Neuron 101, 274–284.e5.

    Article  CAS  PubMed  Google Scholar 

  • Schäfer, M.K.H., Varoqui, H., Defamie, N., Weihe, E., and Erickson, J.D. (2002). Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277, 50734–50748.

    Article  PubMed  Google Scholar 

  • Scheff, S.W., Price, D.A., Schmitt, F.A., DeKosky, S.T., and Mufson, E.J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501–1508.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta, A., and Holmes, A. (2019). A discrete dorsal raphe to basal amygdala 5-HT circuit calibrates aversive memory. Neuron 103, 489–505.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, C.J., Zheng, D., Li, K.X., Yang, J.M., Pan, H.Q., Yu, X.D., Fu, J.Y., Zhu, Y., Sun, Q.X., Tang, M.Y., et al. (2019). Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med 25, 337–349.

    Article  CAS  PubMed  Google Scholar 

  • Shu, S., Zhu, H., Tang, N., Chen, W., Li, X., Li, H., Pei, L., Liu, D., Mu, Y., Tian, Q., et al. (2016). Selective degeneration of entorhinal-CA1 synapses in Alzheimer’s disease via activation of DAPK1. J Neurosci 36, 10843–10852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Sun, J., Moss, J., Wen, Z., Sun, G.J., Hsu, D., Zhong, C., Davoudi, H., Christian, K.M., Toni, N., et al. (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci 16, 1728–1730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamori, S., Malherbe, P., Broger, C., and Jahn, R. (2002). Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3, 798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamori, S., Rhee, J.S., Rosenmund, C., and Jahn, R. (2000). Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194.

    Article  CAS  PubMed  Google Scholar 

  • Toledo-Rodriguez, M., and Markram, H. (2014). Single-cell RT-PCR, a technique to decipher the electrical, anatomical, and genetic determinants of neuronal diversity. Methods Mol Biol 1183, 143–158.

    Article  PubMed  CAS  Google Scholar 

  • Van Hoesen, G.W., Hyman, B.T., and Damasio, A.R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Varga, V., Losonczy, A., Zemelman, B.V., Borhegyi, Z., Nyiri, G., Domonkos, A., Hangya, B., Holderith, N., Magee, J.C., and Freund, T.F. (2009). Fast synaptic subcortical control of hippocampal circuits. Science 326, 449–453.

    Article  CAS  PubMed  Google Scholar 

  • Varoqui, H., Schäfer, M.K.H., Zhu, H., Weihe, E., and Erickson, J.D. (2002). Identification of the differentiation-associated Na+/PI transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22, 142–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Yao, C., Tian, T., Li, X., Yan, H., Wu, J., Li, H., Pei, L., Liu, D., Tian, Q., et al. (2018). A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of entorhinal-CA1 synapses. Mol Psychiatry 23, 199–210.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Shu, X., Liu, D., Shang, Y., Wu, Y., Pei, L., Xu, X., Tian, Q., Zhang, J., Qian, K., et al. (2012). EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73, 774–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yassa, M.A. (2014). Ground zero in Alzheimer’s disease. Nat Neurosci 17, 146–147.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, H., Yan, H., Tang, N., Li, X., Pang, P., Li, H., Chen, W., Guo, Y., Shu, S., Cai, Y., et al. (2017). Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nat Commun 8, 1676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31721002, 81920208014, 31930051, 81800133), China Postdoctoral Science Foundation Funded Project (2018M642853). We thank Dr. Min-Hua Luo at Wuhan Institute of Virology, Chinese Academy of Sciences for the construction and generation of the H129ΔTK virus particles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Lu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, A., Zhang, C., Ke, X. et al. VGLUT3 neurons in median raphe control the efficacy of spatial memory retrieval via ETV4 regulation of VGLUT3 transcription. Sci. China Life Sci. 65, 1590–1607 (2022). https://doi.org/10.1007/s11427-021-2047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2047-8

Keywords

Navigation