Skip to main content
Log in

Neural circuit control of innate behaviors

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agras, W.S., Fitzsimmons-Craft, E.E., and Wilfley, D.E. (2017). Evolution of cognitive-behavioral therapy for eating disorders. Behav Res Ther 88, 26–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadlou, M., Houba, J.H.W., van Vierbergen, J.F.M., Giannouli, M., Gimenez, G.A., van Weeghel, C., Darbanfouladi, M., Shirazi, M.Y., Dziubek, J., Kacem, M., et al. (2021). A cell type-specific corticosubcortical brain circuit for investigatory and novelty-seeking behavior. Science 372.

  • Allen, W.E., DeNardo, L.A., Chen, M.Z., Liu, C.D., Loh, K.M., Fenno, L. E., Ramakrishnan, C., Deisseroth, K., and Luo, L. (2017). Thirst-associated preoptic neurons encode an aversive motivational drive. Science 357, 1149–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison, S., and Timmerman, G.M. (2007). Anatomy of a binge: food environment and characteristics of nonpurge binge episodes. Eat Behav 8, 31–38.

    Article  PubMed  Google Scholar 

  • Andermann, M.L., and Lowell, B.B. (2017). Toward a wiring diagram understanding of appetite control. Neuron 95, 757–778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson, D.J. (2016). Circuit modules linking internal states and social behaviour in flies and mice. Nat Rev Neurosci 17, 692–704.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, F., Turni, H., Mulder, P.G.H., van der Burg, J., and Brecht, M. (2006). Tactile guidance of prey capture in Etruscan shrews. Proc Natl Acad Sci USA 103, 16544–16549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aponte, Y., Atasoy, D., and Sternson, S.M. (2011). AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14, 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Arluison, M., Brochier, G., Vankova, M., Leviel, V., Villalobos, J., and Tramu, G. (1994). Demonstration of peptidergic afferents to the bed nucleus of the stria terminalis using local injections of colchicine. A combined immunohistochemical and retrograde tracing study. Brain Res Bull 34, 319–337.

    Article  CAS  PubMed  Google Scholar 

  • Atasoy, D., Betley, J.N., Su, H.H., and Sternson, S.M. (2012). Deconstruction of a neural circuit for hunger. Nature 488, 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baden, T., Euler, T., and Berens, P. (2020). Understanding the retinal basis of vision across species. Nat Rev Neurosci 21, 5–20.

    Article  CAS  PubMed  Google Scholar 

  • Balodis, I.M., Kober, H., Worhunsky, P.D., White, M.A., Stevens, M.C., Pearlson, G.D., Sinha, R., Grilo, C.M., and Potenza, M.N. (2013). Monetary reward processing in obese individuals with and without binge eating disorder. Biol Psychiatry 73, 877–886.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bargmann, C.I. (1997). Olfactory receptors, vomeronasal receptors, and the organization of olfactory information. Cell 90, 585–587.

    Article  CAS  PubMed  Google Scholar 

  • Barker, A.J., and Baier, H. (2013). SINs and SOMs: neural microcircuits for size tuning in the zebrafish and mouse visual pathway. Front Neural Circuits 7, 89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrington, F.J.F. (1925). The effect of lesions of the hind- and mid-brain on micturition in the cat. Exp Physiol 15, 81–102.

    Article  Google Scholar 

  • Basso, M.A., and May, P.J. (2017). Circuits for action and cognition: a view from the superior colliculus. Annu Rev Vis Sci 3, 197–226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bayless, D.W., Yang, T., Mason, M.M., Susanto, A.A.T., Lobdell, A., and Shah, N.M. (2019). Limbic neurons shape sex recognition and social behavior in sexually naive males. Cell 176, 1190–1205.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benarroch, E.E. (2010). Neural control of the bladder: recent advances and neurologic implications. Neurology 75, 1839–1846.

    Article  PubMed  Google Scholar 

  • Bergan, J.F., Ben-Shaul, Y., and Dulac, C. (2014). Sex-specific processing of social cues in the medial amygdala. eLife 3, e02743.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry, M.J. II, Brivanlou, I.H., Jordan, T.A., and Meister, M. (1999). Anticipation of moving stimuli by the retina. Nature 398, 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Betley, J.N., Cao, Z.F.H., Ritola, K.D., and Sternson, S.M. (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betley, J.N., Xu, S., Cao, Z.F.H., Gong, R., Magnus, C.J., Yu, Y., and Sternson, S.M. (2015). Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts, C.D., Kapoor, R., and Fowler, C.J. (1992). Pontine pathology and voiding dysfunction. Br J Urol 70, 100–102.

    Article  CAS  PubMed  Google Scholar 

  • Bianco, I.H., and Engert, F. (2015). Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol 25, 831–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco, I.H., Kampff, A.R., and Engert, F. (2011). Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front Syst Neurosci 5, 101.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blok, B.F.M. (2002). Central pathways controlling micturition and urinary continence. Urology 59, 13–17.

    Article  PubMed  Google Scholar 

  • Blok, B.F.M., and Holstege, G. (1997). Ultrastructural evidence for a direct pathway from the pontine micturition center to the parasympathetic preganglionic motoneurons of the bladder of the cat. Neurosci Lett 222, 195–198.

    Article  CAS  PubMed  Google Scholar 

  • Blok, B.F.M., de Weerd, H., and Holstege, G. (1997). The pontine micturition center projects to sacral cord GABA immunoreactive neurons in the cat. Neurosci Lett 233, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Boehnke, S.E., and Munoz, D.P. (2008). On the importance of the transient visual response in the superior colliculus. Curr Opin Neurobiol 18, 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Bollmann, J.H. (2019). The zebrafish visual system: from circuits to behavior. Annu Rev Vis Sci 5, 269–293.

    Article  PubMed  Google Scholar 

  • Bolton, A.D., Haesemeyer, M., Jordi, J., Schaechtle, U., Saad, F.A., Mansinghka, V.K., Tenenbaum, J.B., and Engert, F. (2019). Elements of a stochastic 3D prediction engine in larval zebrafish prey capture. eLife 8, e51975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borghuis, B.G., and Leonardo, A. (2015). The role of motion extrapolation in amphibian prey capture. J Neurosci 35, 15430–15441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brackett, N.L., Iuvone, P.M., and Edwards, D.A. (1986). Midbrain lesions, dopamine and male sexual behavior. Behav Brain Res 20, 231–240.

    Article  CAS  PubMed  Google Scholar 

  • Brownell, K.D., and Wadden, T.A. (1992). Etiology and treatment of obesity: understanding a serious, prevalent, and refractory disorder. J Consult Clin Psychol 60, 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Brownley, K.A., Berkman, N.D., Peat, C.M., Lohr, K.N., Cullen, K.E., Bann, C.M., and Bulik, C.M. (2016). Binge-eating disorder in adults: a systematic review and meta-analysis. Ann Intern Med 165, 409–420.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buck, L.B. (2004). Olfactory receptors and odor coding in mammals. Nutr Rev 62, S184–S188.; discussion S224–141.

    Article  PubMed  Google Scholar 

  • Busnelli, M., Bulgheroni, E., Manning, M., Kleinau, G., and Chini, B. (2013). Selective and potent agonists and antagonists for investigating the role of mouse oxytocin receptors. J Pharmacol Exp Ther 346, 318–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caggiano, V., Leiras, R., Goñi-Erro, H., Masini, D., Bellardita, C., Bouvier, J., Caldeira, V., Fisone, G., and Kiehn, O. (2018). Midbrain circuits that set locomotor speed and gait selection. Nature 553, 455–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, H., Haubensak, W., Anthony, T.E., and Anderson, D.J. (2014). Central amygdala PKC-δ+ neurons mediate the influence of multiple anorexigenic signals. Nat Neurosci 17, 1240–1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caire, F., Ranoux, D., Guehl, D., Burbaud, P., and Cuny, E. (2013). A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson’s disease. Acta Neurochir 155, 1647–1654.

    Article  PubMed  Google Scholar 

  • Cameron, A.A., Khan, I.A., Westlund, K.N., and Willis, W.D. (1995). The efferent projections of the periaqueductal gray in the rat: a Phaseolus vulgaris-leucoagglutinin study. II. Descending projections. J Comp Neurol 351, 585–601.

    Article  CAS  PubMed  Google Scholar 

  • Campos, C.A., Bowen, A.J., Schwartz, M.W., and Palmiter, R.D. (2016). Parabrachial CGRP neurons control meal termination. Cell Metab 23, 811–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cang, J., and Feldheim, D.A. (2013). Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36, 51–77.

    Article  CAS  PubMed  Google Scholar 

  • Cang, J., Savier, E., Barchini, J., and Liu, X. (2018). Visual function, organization, and development of the mouse superior colliculus. Annu Rev Vis Sci 4, 239–262.

    Article  PubMed  Google Scholar 

  • Capelli, P., Pivetta, C., Soledad Esposito, M., and Arber, S. (2017). Locomotor speed control circuits in the caudal brainstem. Nature 551, 373–377.

    Article  CAS  PubMed  Google Scholar 

  • Carr, M.M., Wiedemann, A.A., Macdonald-Gagnon, G., and Potenza, M.N. (2021). Impulsivity and compulsivity in binge eating disorder: a systematic review of behavioral studies. Prog Neuropsychopharmacol Biol Psychiatry 110, 110318.

    Article  PubMed  Google Scholar 

  • Carrillo, A., and McHenry, M.J. (2016). Zebrafish learn to forage in the dark. J Exp Biol 219, 582–589.

    Article  PubMed  Google Scholar 

  • Castrioto, A., Lhommée, E., Moro, E., and Krack, P. (2014). Mood and behavioural effects of subthalamic stimulation in Parkinson’s disease. Lancet Neurol 13, 287–305.

    Article  PubMed  Google Scholar 

  • Castro-Alamancos, M.A., and Favero, M. (2016). Whisker-related afferents in superior colliculus. J Neurophysiol 115, 2265–2279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castro, D.C., Cole, S.L., and Berridge, K.C. (2015). Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Catania, K.C. (2012). Tactile sensing in specialized predators—from behavior to the brain. Curr Opin Neurobiol 22, 251–258.

    Article  CAS  PubMed  Google Scholar 

  • Catania, K.C., Hare, J.F., and Campbell, K.L. (2008). Water shrews detect movement, shape, and smell to find prey underwater. Proc Natl Acad Sci USA 105, 571–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheal, M., and Domesick, V.B. (1979). Mating in male Mongolian gerbils after olfactory bulbectomy. Physiol Behav 22, 199–202.

    Article  CAS  PubMed  Google Scholar 

  • Chen, A.X., Yan, J.J., Zhang, W., Wang, L., Yu, Z.X., Ding, X.J., Wang, D. Y., Zhang, M., Zhang, Y.L., Song, N., et al. (2020). Specific hypothalamic neurons required for sensing conspecific male cues relevant to inter-male aggression. Neuron 108, 763–774.e6.

    Article  CAS  PubMed  Google Scholar 

  • Chen, P., and Hong, W. (2018). Neural circuit mechanisms of social behavior. Neuron 98, 16–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Lin, Y.C., Kuo, T.W., and Knight, Z.A. (2015). Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Lin, Y.C., Zimmerman, C.A., Essner, R.A., and Knight, Z.A. (2016). Hunger neurons drive feeding through a sustained, positive reinforcement signal. eLife 5, e18640.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choe, H.K., Reed, M.D., Benavidez, N., Montgomery, D., Soares, N., Yim, Y.S., and Choi, G.B. (2015). Oxytocin mediates entrainment of sensory stimuli to social cues of opposing valence. Neuron 87, 152–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, X.L., Wang, X., Zhang, Z.G., Shen, L., Zingg, B., Huang, J., Zhong, W., Mesik, L., Zhang, L.I., and Tao, H.W. (2018). Inhibitory gain modulation of defense behaviors by zona incerta. Nat Commun 9, 1151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Comoli, E., Ribeiro-Barbosa, E.R., and Canteras, N.S. (2003). Predatory hunting and exposure to a live predator induce opposite patterns of Fos immunoreactivity in the PAG. Behav Brain Res 138, 17–28.

    Article  CAS  PubMed  Google Scholar 

  • Comoli, E., Ribeiro-Barbosa, E.R., Negrão, N., Goto, M., and Canteras, N. S. (2005). Functional mapping of the prosencephalic systems involved in organizing predatory behavior in rats. Neuroscience 130, 1055–1067.

    Article  CAS  PubMed  Google Scholar 

  • Consoli, D., Contarino, A., Tabarin, A., and Drago, F. (2009). Binge-like eating in mice. Int J Eat Disord 42, 402–408.

    Article  PubMed  Google Scholar 

  • Coolen, R.L., Groenendijk, I.M., and Blok, B.F.M. (2020). Recent advances in neuroimaging of bladder, bowel and sexual function. Curr Opin Urol 30, 480–485.

    Article  PubMed  Google Scholar 

  • Cooper, B.G., Miya, D.Y., and Mizumori, S.J.Y. (1998). Superior colliculus and active navigation: role of visual and non-visual cues in controlling cellular representations of space. Hippocampus 8, 340–372.

    Article  CAS  PubMed  Google Scholar 

  • Cregg, J.M., Leiras, R., Montalant, A., Wanken, P., Wickersham, I.R., and Kiehn, O. (2020). Brainstem neurons that command mammalian locomotor asymmetries. Nat Neurosci 23, 730–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • d’Amore, A., Massignan, C., Montera, P., Moles, A., De Lorenzo, A., and Scucchi, S. (2001). Relationship between dietary restraint, binge eating, and leptin in obese women. Int J Obes 25, 373–377.

    Article  Google Scholar 

  • Dai, B., Sun, F., Kuang, A., Li, Y., and Lin, D. (2021). Dopamine release in nucleus accumbens core during social behaviors in mice. bioRxiv doi: https://doi.org/10.1101/2021.06.22.449478.

  • Davidson, J.M. (1966). Activation of the male rat’s sexual behavior by intracerebral implantation of androgen. Endocrinology 79, 783–794.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C. (2014). Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: relevance to the “food addiction” construct. Subst Abuse Rehabil 5, 129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, C., Levitan, R.D., Kaplan, A.S., Carter, J., Reid, C., Curtis, C., Patte, K., and Kennedy, J.L. (2007). Dopamine transporter gene (DAT1) associated with appetite suppression to methylphenidate in a case-control study of binge eating disorder. Neuropsychopharmacology 32, 2199–2206.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C.A., Levitan, R.D., Reid, C., Carter, J.C., Kaplan, A.S., Patte, K.A., King, N., Curtis, C., and Kennedy, J.L. (2009). Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity 17, 1220–1225.

    Article  CAS  PubMed  Google Scholar 

  • De Franceschi, G., and Solomon, S.G. (2018). Visual response properties of neurons in the superficial layers of the superior colliculus of awake mouse. J Physiol 596, 6307–6332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Git, K.C.G., Hazelhoff, E.M., Nota, M.H.C., Schele, E., Luijendijk, M. C.M., Dickson, S.L., van der Plasse, G., and Adan, R.A.H. (2021). Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding. J Physiol 599, 709–724.

    Article  CAS  PubMed  Google Scholar 

  • de Groat, W.C., Araki, I., Vizzard, M.A., Yoshiyama, M., Yoshimura, N., Sugaya, K., Tai, C., and Roppolo, J.R. (1998). Developmental and injury induced plasticity in the micturition reflex pathway. Behav Brain Res 92, 127–140.

    Article  CAS  PubMed  Google Scholar 

  • de Groat, W.C., and Wickens, C. (2013). Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol 207, 66–84.

    Article  CAS  Google Scholar 

  • de Groat, W.C., Griffiths, D., and Yoshimura, N. (2015). Neural control of the lower urinary tract. Compr Physiol 5, 327–396.

    PubMed  PubMed Central  Google Scholar 

  • de Zwaan, M. (2001). Binge eating disorder and obesity. Int J Obes 25, S51–S55.

    Article  Google Scholar 

  • Dean, P., Redgrave, P., Sahibzada, N., and Tsuji, K. (1986). Head and body movements produced by electrical stimulation of superior colliculus in rats: effects of interruption of crossed tectoreticulospinal pathway. Neuroscience 19, 367–380

    Article  CAS  PubMed  Google Scholar 

  • Dean, P., Mitchell, I.J., and Redgrave, P. (1988). Contralateral head movements produced by microinjection of glutamate into superior colliculus of rats: evidence for mediation by multiple output pathways. Neuroscience 24, 491–500.

    Article  CAS  PubMed  Google Scholar 

  • Dean, P., Redgrave, P., and Westby, G.W.M. (1989). Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neuroscis 12, 137–147.

    Article  CAS  Google Scholar 

  • Denis, R.G.P., Joly-Amado, A., Webber, E., Langlet, F., Schaeffer, M., Padilla, S.L., Cansell, C., Dehouck, B., Castel, J., Delbès, A.S., et al. (2015). Palatability can drive feeding independent of AgRP neurons. Cell Metab 22, 646–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjardins, C., Maruniak, J.A., and Bronson, F.H. (1973). Social rank in house mice: differentiation revealed by ultraviolet visualization of urinary marking patterns. Science 182, 939–941.

    Article  CAS  PubMed  Google Scholar 

  • Dhande, O.S., Stafford, B.K., Lim, J.H.A., and Huberman, A.D. (2015). Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu Rev Vis Sci 1, 291–328.

    Article  PubMed  Google Scholar 

  • Dingemans, A.E., Bruna, M.J., and van Furth, E.F. (2002). Binge eating disorder: a review. Int J Obes 26, 299–307.

    Article  CAS  Google Scholar 

  • Dölen, G., Darvishzadeh, A., Huang, K.W., and Malenka, R.C. (2013). Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184.

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos, L.M., Ferro, M.M., Mota-Ortiz, S.R., Baldo, M.V., da Cunha, C., and Canteras, N.S. (2007). Effects of ventrolateral striatal inactivation on predatory hunting. Physiol Behav 90, 669–673.

    Article  CAS  PubMed  Google Scholar 

  • dos Santos, L.M., Boschen, S.L., Bortolanza, M., de Oliveira, W.F., Furigo, I.C., Mota-Ortiz, S.R., Da Cunha, C., and Canteras, N.S. (2012). The role of the ventrolateral caudoputamen in predatory hunting. Physiol Behav 105, 893–898.

    Article  PubMed  Google Scholar 

  • Douglass, A.M., Kucukdereli, H., Ponserre, M., Markovic, M., Gründemann, J., Strobel, C., Alcala Morales, P.L., Conzelmann, K.K., Lüthi, A., and Klein, R. (2017). Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci 20, 1384–1394.

    Article  CAS  PubMed  Google Scholar 

  • Dräger, U.C., and Hubel, D.H. (1975). Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38, 690–713.

    Article  PubMed  Google Scholar 

  • Dulac, C., and Axel, R. (1995). A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Dulac, C., and Torello, A.T. (2003). Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci 4, 551–562.

    Article  CAS  PubMed  Google Scholar 

  • Emery, D.E., and Sachs, B.D. (1976). Copulatory behavior in male rats with lesions in the bed nucleus of the stria terminalis. Physiol Behav 17, 803–806.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, M.S., Capelli, P., and Arber, S. (2014). Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508, 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Fadok, J.P., Markovic, M., Tovote, P., and Lüthi, A. (2018). New perspectives on central amygdala function. Curr Opin Neurobiol 49, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Fahrbach, S.E., Morrell, J.I., and Pfaff, D.W. (1985). Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology 40, 526–532.

    Article  CAS  PubMed  Google Scholar 

  • Fairburn, C.G., and Harrison, P.J. (2003). Eating disorders. Lancet 361, 407–416.

    Article  PubMed  Google Scholar 

  • Falkner, A.L., Dollar, P., Perona, P., Anderson, D.J., and Lin, D. (2014). Decoding ventromedial hypothalamic neural activity during male mouse aggression. J Neurosci 34, 5971–5984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkner, A.L., Wei, D., Song, A., Watsek, L.W., Chen, I., Chen, P., Feng, J. E., and Lin, D. (2020). Hierarchical representations of aggression in a hypothalamic-midbrain circuit. Neuron 106, 637–648.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Y.Y., Yamaguchi, T., Song, S.C., Tritsch, N.X., and Lin, D. (2018). A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192–207.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favaro, P.D.N., Gouvêa, T.S., de Oliveira, S.R., Vautrelle, N., Redgrave, P., and Comoli, E. (2011). The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience 176, 318–327.

    Article  CAS  PubMed  Google Scholar 

  • Felsen, G., and Mainen, Z.F. (2008). Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron 60, 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson, J.N., Young, L.J., Hearn, E.F., Matzuk, M.M., Insel, T.R., and Winslow, J.T. (2000). Social amnesia in mice lacking the oxytocin gene. Nat Genet 25, 284–288.

    Article  CAS  PubMed  Google Scholar 

  • Ferretti, V., Maltese, F., Contarini, G., Nigro, M., Bonavia, A., Huang, H., Gigliucci, V., Morelli, G., Scheggia, D., Manage, F., et al. (2019). Oxytocin signaling in the central amygdala modulates emotion discrimination in mice. Curr Biol 29, 1938–1953.e6.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, A.E. (1956). Maternal and sexual behavior induced by intracranial chemical stimulation. Science 124, 228–229.

    Article  CAS  PubMed  Google Scholar 

  • Folgueira, C., Beiroa, D., Porteiro, B., Duquenne, M., Puighermanal, E., Fondevila, M.F., Barja-Fernández, S., Gallego, R., Hernández-Bautista, R., Castelao, C., et al. (2019). Hypothalamic dopamine signalling regulates brown fat thermogenesis. Nat Metab 1, 811–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler, C.J., Griffiths, D., and de Groat, W.C. (2008). The neural control of micturition. Nat Rev Neurosci 9, 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser, E.J., and Shah, N.M. (2014). Complex chemosensory control of female reproductive behaviors. PLoS ONE 9, e90368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Froemke, R.C., and Young, L.J. (2021). Oxytocin, neural plasticity, and social behavior. Annu Rev Neurosci 44, 359–381.

    Article  CAS  PubMed  Google Scholar 

  • Furigo, I.C., de Oliveira, W.F., de Oliveira, A.R., Comoli, E., Baldo, M.V.C., Mota-Ortiz, S.R., and Canteras, N.S. (2010). The role of the superior colliculus in predatory hunting. Neuroscience 165, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Gale, S.D., and Murphy, G.J. (2014). Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J Neurosci 34, 13458–13471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gale, S.D., and Murphy, G.J. (2016). Active dendritic properties and local inhibitory input enable selectivity for object motion in mouse superior colliculus neurons. J Neurosci 36, 9111–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, D.G.E., Page, R.A., Geipel, I., Taylor, R.C., Ryan, M.J., and Halfwerk, W. (2016). Bats perceptually weight prey cues across sensory systems when hunting in noise. Science 353, 1277–1280.

    Article  CAS  PubMed  Google Scholar 

  • Gong, R., Xu, S., Hermundstad, A., Yu, Y., and Sternson, S.M. (2020). Hindbrain double-negative feedback mediates palatability-guided food and water consumption. Cell 182, 1589–1605.e22.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, D.W. (2010). Lisdexamfetamine dimesylate (vyvanse), a pro-drug stimulant for attention-deficit/hyperactivity disorder. P T 35, 273–287.

    PubMed  PubMed Central  Google Scholar 

  • Gréco, B., Edwards, D.A., Michael, R.P., and Clancy, A.N. (1996). Androgen receptor immunoreactivity and mating-induced Fos expression in forebrain and midbrain structures in the male rat. Neuroscience 75, 161–171.

    Article  PubMed  Google Scholar 

  • Greeno, C.G., and Wing, R.R. (1996). A double-blind, placebo-controlled trial of the effect of fluoxetine on dietary intake in overweight women with and without binge-eating disorder. Am J Clin Nutr 64, 267–273.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, D. (2015). Neural control of micturition in humans: a working model. Nat Rev Urol 12, 695–705.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, D.J., and Fowler, C.J. (2013). The micturition switch and its forebrain influences. Acta Physiol 207, 93–109.

    Article  CAS  Google Scholar 

  • Grinevich, V., Knobloch-Bollmann, H.S., Eliava, M., Busnelli, M., and Chini, B. (2016). Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry 79, 155–164.

    Article  CAS  PubMed  Google Scholar 

  • Grinevich, V., and Stoop, R. (2018). Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Neuron 99, 887–904.

    Article  CAS  PubMed  Google Scholar 

  • Grobstein, P. (1988). Between the retinotectal projection and directed movement: topography of a sensorimotor interface. Brain Behav Evol 31, 34–48.

    Article  CAS  PubMed  Google Scholar 

  • Gropp, E., Shanabrough, M., Borok, E., Xu, A.W., Janoschek, R., Buch, T., Plum, L., Balthasar, N., Hampel, B., Waisman, A., et al. (2005). Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 8, 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  • Guerdjikova, A.I., Mori, N., Casuto, L.S., and McElroy, S.L. (2016). Novel pharmacologic treatment in acute binge eating disorder - role of lisdexamfetamine. Neuropsychiatr Dis Treat 12, 833–841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halem, H.A., Cherry, J.A., and Baum, M.J. (1999). Vomeronasal neuroepithelium and forebrain Fos responses to male pheromones in male and female mice. J Neurobiol 39, 249–263.

    Article  CAS  PubMed  Google Scholar 

  • Han, W., Tellez, L.A., Rangel Jr, M.J., Motta, S.C., Zhang, X., Perez, I.O., Canteras, N.S., Shammah-Lagnado, S.J., van den Pol, A.N., and de Araujo, I.E. (2017). Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168, 311–324.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardaway, J.A., Halladay, L.R., Mazzone, C.M., Pati, D., Bloodgood, D. W., Kim, M., Jensen, J., DiBerto, J.F., Boyt, K.M., Shiddapur, A., et al. (2019a). Central amygdala prepronociceptin-expressing neurons mediate palatable food consumption and reward. Neuron 102, 1037–1052.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardaway, J.A., Halladay, L.R., Mazzone, C.M., Pati, D., Bloodgood, D. W., Kim, M., Jensen, J., DiBerto, J.F., Boyt, K.M., Shiddapur, A., et al. (2019b). Central amygdala prepronociceptin-expressing neurons mediate palatable food consumption and reward. Neuron 102, 1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashikawa, K., Hashikawa, Y., Falkner, A., and Lin, D. (2016). The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 38, 27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, S., Dong, W., Deng, Q., Weng, S., and Sun, W. (2003). Seeing more clearly: recent advances in understanding retinal circuitry. Science 302, 408–411.

    Article  CAS  PubMed  Google Scholar 

  • Heal, D.J., and Smith, S.L. (2021). Prospects for new drugs to treat binge-eating disorder: Insights from psychopathology and neuropharmacology. J Psychopharmacol doi: https://doi.org/10.1177/02698811211032475.

  • Heeb, M.M., and Yahr, P. (1996). c-Fos immunoreactivity in the sexually dimorphic area of the hypothalamus and related brain regions of male gerbils after exposure to sex-related stimuli or performance of specific sexual behaviors. Neuroscience 72, 1049–1071.

    Article  CAS  PubMed  Google Scholar 

  • Holstege, G. (2005). Micturition and the soul. J Comp Neurol 493, 15–20.

    Article  PubMed  Google Scholar 

  • Holstege, G., Griffiths, D., de Wall, H., and Dalm, E. (1986). Anatomical and physiological observations on suprapinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Holy, T.E., and Guo, Z. (2005). Ultrasonic songs of male mice. PLoS Biol 3, e386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, W., Kim, D.W., and Anderson, D.J. (2014). Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörnberg, H., Pérez-Garci, E., Schreiner, D., Hatstatt-Burklé, L., Magara, F., Baudouin, S., Matter, A., Nacro, K., Pecho-Vrieseling, E., and Scheiffele, P. (2020). Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 584, 252–256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou, X.H., Hyun, M., Taranda, J., Huang, K.W., Todd, E., Feng, D., Atwater, E., Croney, D., Zeidel, M.L., Osten, P., et al. (2016). Central control circuit for context-dependent micturition. Cell 167, 73–86.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy, J.L., Yavorska, I., Wehr, M., and Niell, C.M. (2016). Vision drives accurate approach behavior during prey capture in laboratory mice. Curr Biol 26, 3046–3052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy, J.L., Bishop, H.I., and Niell, C.M. (2019). Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr Biol 29, 4130–4138.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, R.K., Zuo, Y., Ly, T., Wang, J., Meera, P., Wu, Y.E., and Hong, W. (2021). An amygdala-to-hypothalamus circuit for social reward. Nat Neurosci 24, 831–842.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M., Li, D., Cheng, X., Pei, Q., Xie, Z., Gu, H., Zhang, X., Chen, Z., Liu, A., Wang, Y., et al. (2021). The tectonigral pathway regulates appetitive locomotion in predatory hunting in mice. Nat Commun 12, 4409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel, T.Y., Myatt, J.P., Jordan, N.R., Dewhirst, O.P., McNutt, J.W., and Wilson, A.M. (2016). Energy cost and return for hunting in African wild dogs and cheetahs. Nat Commun 7, 11034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijgens, P.T., Heijkoop, R., and Snoeren, E.M.S. (2021). Silencing and stimulating the medial amygdala impairs ejaculation but not sexual incentive motivation in male rats. Behav Brain Res 405, 113206.

    Article  CAS  PubMed  Google Scholar 

  • Hull, E., Wood, R., and McKenna, K. (2006). Neurobiology of male sexual behavior. In: Neill, J.D., ed. Knobil and Neill’s Physiology of Reproduction. St Louis: Academic Press. 1729–1824.

    Chapter  Google Scholar 

  • Hung, L.W., Neuner, S., Polepalli, J.S., Beier, K.T., Wright, M., Walsh, J.J., Lewis, E.M., Luo, L., Deisseroth, K., Dölen, G., et al. (2017). Gating of social reward by oxytocin in the ventral tegmental area. Science 357, 1406–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurst, J.L., Payne, C.E., Nevison, C.M., Marie, A.D., Humphries, R.E., Robertson, D.H.L., Cavaggioni, A., and Beynon, R.J. (2001). Individual recognition in mice mediated by major urinary proteins. Nature 414, 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Hyun, M., Taranda, J., Radeljic, G., Miner, L., Wang, W., Ochandarena, N., Huang, K.W., Osten, P., and Sabatini, B.L. (2021). Social isolation uncovers a circuit underlying context-dependent territory-covering micturition. Proc Natl Acad Sci USA 118, e2018078118.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, S., Yang, R., Tantry, A., Davis, C.H., Yang, T., Knoedler, J.R., Wei, Y., Adams, E.L., Thombare, S., Golf, S.R., et al. (2019). Periodic remodeling in a neural circuit governs timing of female sexual behavior. Cell 179, 1393–1408.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Insel, T.R., and Harbaugh, C.R. (1989). Lesions of the hypothalamic paraventricular nucleus disrupt the initiation of maternal behavior. Physiol Behav 45, 1033–1041.

    Article  CAS  PubMed  Google Scholar 

  • Insel, T.R., and Hulihan, T.J. (1995). A gender-specific mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles. Behav Neurosci 109, 782–789.

    Article  CAS  PubMed  Google Scholar 

  • Irwin, D.E., Milsom, I., Kopp, Z., Abrams, P., and Cardozo, L. (2006). Impact of overactive bladder symptoms on employment, social interactions and emotional well-being in six European countries. BJU Int 97, 96–100.

    Article  PubMed  Google Scholar 

  • Isa, T., and Sasaki, S. (2002). Brainstem control of head movements during orienting; organization of the premotor circuits. Prog Neurobiol 66, 205–241.

    Article  PubMed  Google Scholar 

  • Isogai, Y., Si, S., Pont-Lezica, L., Tan, T., Kapoor, V., Murthy, V.N., and Dulac, C. (2011). Molecular organization of vomeronasal chemoreception. Nature 478, 241–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, H., Sales, A.C., Fry, C.H., Kanai, A.J., Drake, M.J., and Pickering, A.E. (2020). Probabilistic, spinally-gated control of bladder pressure and autonomous micturition by Barrington’s nucleus CRH neurons. eLife 9, e56605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jais, A., Paeger, L., Sotelo-Hitschfeld, T., Bremser, S., Prinzensteiner, M., Klemm, P., Mykytiuk, V., Widdershooven, P.J.M., Vesting, A.J., Grzelka, K., et al. (2020). PNOCARC neurons promote hyperphagia and obesity upon high-fat-diet feeding. Neuron 106, 1009–1025.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings, J.H., Rizzi, G., Stamatakis, A.M., Ung, R.L., and Stuber, G.D. (2013). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517–1521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings, J.H., Ung, R.L., Resendez, S.L., Stamatakis, A.M., Taylor, J.G., Huang, J., Veleta, K., Kantak, P.A., Aita, M., Shilling-Scrivo, K., et al. (2015). Visualizing hypothalamic network dynamics for appetitive and consummatory behaviors. Cell 160, 516–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josset, N., Roussel, M., Lemieux, M., Lafrance-Zoubga, D., Rastqar, A., and Bretzner, F. (2018). Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr Biol 28, 884–901.e3.

    Article  CAS  PubMed  Google Scholar 

  • Jurek, B., and Neumann, I.D. (2018). The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 98, 1805–1908.

    Article  CAS  PubMed  Google Scholar 

  • Kanen, J.W., Arntz, F.E., Yellowlees, R., Cardinal, R.N., Price, A., Christmas, D.M., Apergis-Schoute, A.M., Sahakian, B.J., and Robbins, T.W. (2021). Serotonin depletion amplifies distinct human social emotions as a function of individual differences in personality. Transl Psychiatry 11, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karigo, T., Kennedy, A., Yang, B., Liu, M., Tai, D., Wahle, I.A., and Anderson, D.J. (2021). Distinct hypothalamic control of same- and opposite-sex mounting behaviour in mice. Nature 589, 258–263.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, A.W., Ackels, T., Kuo, T.H., Cichy, A., Dey, S., Hays, C., Kateri, M., Logan, D.W., Marton, T.F., Spehr, M., et al. (2014). Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell 157, 676–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, J.A., Chen, J., Simpson, S., Wang, E.H.J., Lilascharoen, V., George, O., Lim, B.K., and Stowers, L. (2018). Voluntary urination control by brainstem neurons that relax the urethral sphincter. Nat Neurosci 21, 1229–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller, M., Baum, M.J., Brock, O., Brennan, P.A., and Bakker, J. (2009). The main and the accessory olfactory systems interact in the control of mate recognition and sexual behavior. Behav Brain Res 200, 268–276.

    Article  PubMed  Google Scholar 

  • Kendrick, K.M., Lévy, F., and Keverne, E.B. (1991a). Importance of vaginocervical stimulation for the formation of maternal bonding in primiparous and multiparous parturient ewes. Physiol Behav 50, 595–600.

    Article  CAS  PubMed  Google Scholar 

  • Kendrick, K.M., Keverne, E.B., Hinton, M.R., and Goode, J.A. (1991b). Cerebrospinal fluid and plasma concentrations of oxytocin and vasopressin during parturition and vaginocervical stimulation in the sheep. Brain Res Bull 26, 803–807.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, R.M., Hutson, P.H., Herman, B.K., and Potenza, M.N. (2016). The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 63, 223–238.

    Article  PubMed  Google Scholar 

  • Killackey, H.P., and Erzurumlu, R.S. (1981). Trigeminal projections to the superior colliculus of the rat. J Comp Neurol 201, 221–242.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.Y., Heo, G., Kim, M., Kim, H., Jin, J.A., Kim, H.K., Jung, S., An, M., Ahn, B.H., Park, J.H., et al. (2020). A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580, 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y., Venkataraju, K.U., Pradhan, K., Mende, C., Taranda, J., Turaga, S. C., Arganda-Carreras, I., Ng, L., Hawrylycz, M.J., Rockland, K.S., et al. (2015). Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep 10, 292–305.

    Article  CAS  PubMed  Google Scholar 

  • Kimchi, T., Xu, J., and Dulac, C. (2007). A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448, 1009–1014.

    Article  CAS  PubMed  Google Scholar 

  • King, A.J. (2004). The superior colliculus. Curr Biol 14, R335–R338.

    Article  CAS  PubMed  Google Scholar 

  • King, B.M. (2013). The modern obesity epidemic, ancestral hunter-gatherers, and the sensory/reward control of food intake. Am Psychol 68, 88–96.

    Article  PubMed  Google Scholar 

  • Kitta, T., Mitsui, T., Kanno, Y., Chiba, H., Moriya, K., and Shinohara, N. (2015). Brain-bladder control network: the unsolved 21st century urological mystery. Int J Urol 22, 342–348.

    Article  PubMed  Google Scholar 

  • Klaus, A., Alves da Silva, J., and Costa, R.M. (2019). What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu Rev Neurosci 42, 459–483.

    Article  CAS  PubMed  Google Scholar 

  • Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., Osten, P., Schwarz, M.K., Seeburg, P.H., Stoop, R., et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566.

    Article  CAS  PubMed  Google Scholar 

  • Kohl, J., Babayan, B.M., Rubinstein, N.D., Autry, A.E., Marin-Rodriguez, B., Kapoor, V., Miyamishi, K., Zweifel, L.S., Luo, L., Uchida, N., et al. (2018). Functional circuit architecture underlying parental behaviour. Nature 556, 326–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosfeld, M., Heinrichs, M., Zak, P.J., Fischbacher, U., and Fehr, E. (2005). Oxytocin increases trust in humans. Nature 435, 673–676.

    Article  CAS  PubMed  Google Scholar 

  • Koshimizu, T., Nakamura, K., Egashira, N., Hiroyama, M., Nonoguchi, H., and Tanoue, A. (2012). Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92, 1813–1864.

    Article  CAS  PubMed  Google Scholar 

  • Krashes, M.J., Koda, S., Ye, C.P., Rogan, S.C., Adams, A.C., Cusher, D.S., Maratos-Flier, E., Roth, B.L., and Lowell, B.B. (2011). Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Invest 121, 1424–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krashes, M.J., Shah, B.P., Madara, J.C., Olson, D.P., Strochlic, D.E., Garfield, A.S., Vong, L., Pei, H., Watabe-Uchida, M., Uchida, N., et al. (2014). An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507, 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristeller, J., Wolever, R.Q., and Sheets, V. (2014). Mindfulness-based eating awareness training (MB-EAT) for binge eating: a randomized clinical trial. Mindfulness 5, 282–297.

    Article  Google Scholar 

  • Kwon, J.T., Ryu, C., Lee, H., Sheffield, A., Fan, J., Cho, D.H., Bigler, S., Sullivan, H.A., Choe, H.K., Wickersham, I.R., et al. (2021). An amygdala circuit that suppresses social engagement. Nature 593, 114–118.

    Article  CAS  PubMed  Google Scholar 

  • Langley, W.M. (1989). Grasshopper mouse’s use of visual cues during a predatory attack. Behav Processes 19, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Larsson, K. (1975). Sexual impairment of inexperienced male rats following pre- and postpuberal olfactory bulbectomy. Physiol Behav 14, 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Kim, D.W., Remedios, R., Anthony, T.E., Chang, A., Madisen, L., Zeng, H., and Anderson, D.J. (2014). Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509, 627–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, R.B., Daly, R.H., and Daly, R. (1999). The Cambridge Encyclopedia of Hunters and Gatherers. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lefevre, A., Benusiglio, D., Tang, Y., Krabichler, Q., Charlet, A., and Grinevich, V. (2021). Oxytocinergic feedback circuitries: an anatomical basis for neuromodulation of social behaviors. Front Neural Circuits 15, 688234.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenschow, C., and Lima, S.Q. (2020). In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 60, 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts, W.S. (1959). What the frogs eyetells the frogs brain. Proc Inst Radio Eng 47, 1940–1951.

    Google Scholar 

  • Levick, W.R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit’s retina. J Physiol 188, 285–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lévy, F., Kendrick, K.M., Keverne, E.B., Piketty, V., and Poindron, P. (1992). Intracerebral oxytocin is important for the onset of maternal behavior in inexperienced ewes delivered under peridural anesthesia. Behav Neurosci 106, 427–432.

    Article  PubMed  Google Scholar 

  • Lévy, F., Kendrick, K.M., Goode, J.A., Guevara-Guzman, R., and Keverne, E.B. (1995). Oxytocin and vasopressin release in the olfactory bulb of parturient ewes: changes with maternal experience and effects on acetylcholine, γ-aminobutyric acid, glutamate and noradrenaline release. Brain Res 669, 197–206.

    Article  PubMed  Google Scholar 

  • Leypold, B.G., Yu, C.R., Leinders-Zufall, T., Kim, M.M., Zufall, F., and Axel, R. (2002). Altered sexual and social behaviors in trp2 mutant mice. Proc Natl Acad Sci USA 99, 6376–6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, K., Nakajima, M., Ibañez-Tallon, I., and Heintz, N. (2016). A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167, 60–72.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M.M., Madara, J.C., Steger, J.S., Krashes, M.J., Balthasar, N., Campbell, J.N., Resch, J.M., Conley, N.J., Garfield, A.S., and Lowell, B.B. (2019). The paraventricular hypothalamus regulates satiety and prevents obesity via two genetically distinct circuits. Neuron 102, 653–667.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X.Q., and Du, J.L. (2013). Visual system and prey capture behavior of larval zebrafish. Hereditas 35, 468–476.

    PubMed  Google Scholar 

  • Li, Y., Mathis, A., Grewe, B.F., Osterhout, J.A., Ahanonu, B., Schnitzer, M. J., Murthy, V.N., and Dulac, C. (2017). Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190.e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zeng, J., Zhang, J., Yue, C., Zhong, W., Liu, Z., Feng, Q., and Luo, M. (2018). Hypothalamic circuits for predation and evasion. Neuron 97, 911–924.e5.

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., Boyle, M.P., Dollar, P., Lee, H., Lein, E.S., Perona, P., and Anderson, D.J. (2011). Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, D.Y., Zhang, S.Z., Block, E., and Katz, L.C. (2005). Encoding social signals in the mouse main olfactory bulb. Nature 434, 470–477.

    Article  CAS  PubMed  Google Scholar 

  • Liu, K., Kim, J., Kim, D.W., Zhang, Y.S., Bao, H., Denaxa, M., Lim, S.A., Kim, E., Liu, C., Wickersham, I.R., et al. (2017). Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature 548, 582–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, Y.C., Salamone, J.D., and Sachs, B.D. (1997). Lesions in medial preoptic area and bed nucleus of stria terminalis: differential effects on copulatory behavior and noncontact erection in male rats. J Neurosci 17, 5245–5253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livneh, Y., Ramesh, R.N., Burgess, C.R., Levandowski, K.M., Madara, J. C., Fenselau, H., Goldey, G.J., Diaz, V.E., Jikomes, N., Resch, J.M., et al. (2017). Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 546, 611–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LoParo, D., and Waldman, I.D. (2015). The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a meta-analysis. Mol Psychiatry 20, 640–646.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M., Fee, M.S., and Katz, L.C. (2003). Encoding pheromonal signals in the accessory olfactory bulb of behaving mice. Science 299, 1196–1201.

    Article  CAS  PubMed  Google Scholar 

  • Luo, S.X., Huang, J., Li, Q., Mohammad, H., Lee, C.Y., Krishna, K., Kok, A.M.Y., Tan, Y.L., Lim, J.Y., Li, H., et al. (2018). Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science 361, 76–81.

    Article  CAS  PubMed  Google Scholar 

  • Luquet, S., Perez, F.A., Hnasko, T.S., and Palmiter, R.D. (2005). NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310, 683–685.

    Article  CAS  PubMed  Google Scholar 

  • Mallory, B.S., Roppolo, J.R., and de Groat, W.C. (1991). Pharmacological modulation of the pontine micturition center. Brain Res 546, 310–320.

    Article  CAS  PubMed  Google Scholar 

  • Mandiyan, V.S., Coats, J.K., and Shah, N.M. (2005). Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8, 1660–1662.

    Article  CAS  PubMed  Google Scholar 

  • Marlin, B.J., Mitre, M., D’amour, J.A., Chao, M.V., and Froemke, R.C. (2015). Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masullo, L., Mariotti, L., Alexandre, N., Freire-Pritchett, P., Boulanger, J., and Tripodi, M. (2019). Genetically defined functional modules for spatial orienting in the mouse superior colliculus. Curr Biol 29, 2892–2904.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy, S.L., Hudson, J.I., Capece, J.A., Beyers, K., Fisher, A.C., and Rosenthal, N.R. (2007). Topiramate for the treatment of binge eating disorder associated with obesity: a placebo-controlled study. Biol Psychiatry 61, 1039–1048.

    Article  CAS  PubMed  Google Scholar 

  • Meredith, M.A., and Stein, B.E. (1983). Interactions among converging sensory inputs in the superior colliculus. Science 221, 389–391.

    Article  CAS  PubMed  Google Scholar 

  • Merrill, L., Gonzalez, E.J., Girard, B.M., and Vizzard, M.A. (2016). Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 13, 193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minassian, V.A., Drutz, H.P., and Al-Badr, A. (2003). Urinary incontinence as a worldwide problem. Int J Gynecol Obstet 82, 327–338.

    Article  CAS  Google Scholar 

  • Minerbo, G., Albeck, D., Goldberg, E., Lindberg, T., Nakari, M., Martinez, C., Garritano, J., and Smock, T. (1994). Activity of peptidergic neurons in the amygdala during sexual behavior in the male rat. Exp Brain Res 97, 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Mischiati, M., Lin, H.T., Herold, P., Imler, E., Olberg, R., and Leonardo, A. (2015). Internal models direct dragonfly interception steering. Nature 517, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Mitre, M., Marlin, B.J., Schiavo, J.K., Morina, E., Norden, S.E., Hackett, T. A., Aoki, C.J., Chao, M.V., and Froemke, R.C. (2016). A distributed network for social cognition enriched for oxytocin receptors. J Neurosci 36, 2517–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitrofanis, J. (2005). Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta. Neuroscience 130, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D., Hao, J., Regev, A., Dulac, C., et al. (2018). Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mogenson, G., Jones, D., and Yim, C. (1980). From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14, 69–97.

    Article  CAS  PubMed  Google Scholar 

  • Mohammad, H., Senol, E., Graf, M., Lee, C.Y., Li, Q., Liu, Q., Yeo, X.Y., Wang, M., Laskaratos, A., Xu, F., et al. (2021). A neural circuit for excessive feeding driven by environmental context in mice. Nat Neurosci 24, 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  • Mohedano-Moriano, A., Pro-Sistiaga, P., Ubeda-Bañón, I., Crespo, C., Insausti, R., and Martinez-Marcos, A. (2007). Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur J Neurosci 25, 2065–2080.

    Article  PubMed  Google Scholar 

  • Morgan, J.C., diDonato, C.J., Iyer, S.S., Jenkins, P.D., Smith, J.R., and Sethi, K.D. (2006). Self-stimulatory behavior associated with deep brain stimulation in Parkinson’s disease. Mov Disord 21, 283–285.

    Article  PubMed  Google Scholar 

  • Morin, L.P., and Studholme, K.M. (2014). Retinofugal projections in the mouse. J Comp Neurol 522, 3733–3753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morton, G.J., Meek, T.H., and Schwartz, M.W. (2014). Neurobiology of food intake in health and disease. Nat Rev Neurosci 15, 367–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mota-Ortiz, S.R., Sukikara, M.H., Felicio, L.F., and Canteras, N.S. (2009). Afferent connections to the rostrolateral part of the periaqueductal gray: a critical region influencing the motivation drive to hunt and forage. Neural Plast 2009, 1–11.

    Article  Google Scholar 

  • Mota-Ortiz, S.R., Sukikara, M.H., Bittencourt, J.C., Baldo, M.V., Elias, C. F., Felicio, L.F., and Canteras, N.S. (2012). The periaqueductal gray as a critical site to mediate reward seeking during predatory hunting. Behav Brain Res 226, 32–40.

    Article  PubMed  Google Scholar 

  • Mukhopadhyay, S., and Stowers, L. (2020). Choosing to urinate. Circuits and mechanisms underlying voluntary urination. Curr Opin Neurobiol 60, 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Munz, M., Brecht, M., and Wolfe, J. (2010). Active touch during shrew prey capture. Front Behav Neurosci 4, 191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy, R., Straebler, S., Basden, S., Cooper, Z., and Fairburn, C.G. (2012). Interpersonal psychotherapy for eating disorders. Clin Psychol Psychother 19, 150–158.

    Article  PubMed  Google Scholar 

  • Muto, A., and Kawakami, K. (2013). Prey capture in zebrafish larvae serves as a model to study cognitive functions. Front Neural Circuits 7.

  • Muto, A., Lal, P., Ailani, D., Abe, G., Itoh, M., and Kawakami, K. (2017). Activation of the hypothalamic feeding centre upon visual prey detection. Nat Commun 8, 15029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadelhaft, I., and Vera, P.L. (1996). Neurons in the rat brain and spinal cord labeled after pseudorabies virus injected into the external urethral sphincter. J Comp Neurol 375, 502–517.

    Article  CAS  PubMed  Google Scholar 

  • Nadelhaft, I., Vera, P.L., Card, J.P., and Miselis, R.R. (1992). Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder. Neurosci Lett 143, 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Nakajima, M., Görlich, A., and Heintz, N. (2014). Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 159, 295–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura, T., and Gold, G.H. (1987). A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325, 442–444.

    Article  CAS  PubMed  Google Scholar 

  • Navarro, M., Olney, J.J., Burnham, N.W., Mazzone, C.M., Lowery-Gionta, E.G., Pleil, K.E., Kash, T.L., and Thiele, T.E. (2016). Lateral hypothalamus GABAergic neurons modulate consummatory behaviors regardless of the caloric content or biological relevance of the consumed stimuli. Neuropsychopharmacology 41, 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  • Nectow, A.R., Schneeberger, M., Zhang, H., Field, B.C., Renier, N., Azevedo, E., Patel, B., Liang, Y., Mitra, S., Tessier-Lavigne, M., et al. (2017). Identification of a brainstem circuit controlling feeding. Cell 170, 429–442.e11.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, R.J., and Zucker, I. (1981). Photoperiodic control of reproduction in olfactory-bulbectomized rats. Neuroendocrinology 32, 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C., Biryukov, S., Abbafati, C., Abera, S.F., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nieh, E.H., Matthews, G.A., Allsop, S.A., Presbrey, K.N., Leppla, C.A., Wichmann, R., Neve, R., Wildes, C.P., and Tye, K.M. (2015). Decoding neural circuits that control compulsive sucrose seeking. Cell 160, 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirenberg, M.J., and Waters, C. (2006). Compulsive eating and weight gain related to dopamine agonist use. Mov Disord 21, 524–529.

    Article  PubMed  Google Scholar 

  • Noto, H., Roppolo, J.R., Steers, W.D., and de Groat, W.C. (1989). Excitatory and inhibitory influences on bladder activity elicited by electrical stimulation in the pontine micturition center in the rat. Brain Res 492, 99–115.

    Article  CAS  PubMed  Google Scholar 

  • Nour, S., Svarer, C., Kristensen, J.K., Paulson, O.B., and Law, I. (2000). Cerebral activation during micturition in normal men. Brain 123, 781–789.

    Article  PubMed  Google Scholar 

  • O’Connor, E.C., Kremer, Y., Lefort, S., Harada, M., Pascoli, V., Rohner, C., and Lüscher, C. (2015). Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564.

    Article  PubMed  Google Scholar 

  • Oettl, L.L., Ravi, N., Schneider, M., Scheller, M.F., Schneider, P., Mitre, M., da Silva Gouveia, M., Froemke, R.C., Chao, M.V., Young, W.S., et al. (2016). Oxytocin enhances social recognition by modulating cortical control of early olfactory processing. Neuron 90, 609–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogasawara, T., Sogukpinar, F., Zhang, K., Feng, Y.Y., Pai, J., Jezzini, A., and Monosov, I.E. (2021). Neuronal mechanisms of novelty seeking. bioRxiv doi: https://doi.org/10.1101/2021.03.12.435019.

  • Ollmann, M.M., Wilson, B.D., Yang, Y.K., Kerns, J.A., Chen, Y., Gantz, I., and Barsh, G.S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138.

    Article  CAS  PubMed  Google Scholar 

  • Olveczky, B.P., Baccus, S.A., and Meister, M. (2003). Segregation of object and background motion in the retina. Nature 423, 401–408.

    Article  PubMed  Google Scholar 

  • Oteiza, P., Odstrcil, I., Lauder, G., Portugues, R., and Engert, F. (2017). A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish. Nature 547, 445–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owen, S.F., Tuncdemir, S.N., Bader, P.L., Tirko, N.N., Fishell, G., and Tsien, R.W. (2013). Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature 500, 458–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S.G., Jeong, Y.C., Kim, D.G., Lee, M.H., Shin, A., Park, G., Ryoo, J., Hong, J., Bae, S., Kim, C.H., et al. (2018). Medial preoptic circuit induces hunting-like actions to target objects and prey. Nat Neurosci 21, 364–372.

    Article  CAS  PubMed  Google Scholar 

  • Parker, K.J., Oztan, O., Libove, R.A., Sumiyoshi, R.D., Jackson, L.P., Karhson, D.S., Summers, J.E., Hinman, K.E., Motonaga, K.S., Phillips, J.M., et al. (2017). Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc Natl Acad Sci USA 114, 8119–8124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick, L. (2002). Eating disorders: a review of the literature with emphasis on medical complications and clinical nutrition. Altern Med Rev 7, 184–202.

    PubMed  Google Scholar 

  • Pedersen, C.A., and Prange Jr, A.J. (1979). Induction of maternal behavior in virgin rats after intracerebroventricular administration of oxytocin. Proc Natl Acad Sci USA 76, 6661–6665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, C.A., Ascher, J.A., Monroe, Y.L., and Prange Jr, A.J. (1982). Oxytocin induces maternal behavior in virgin female rats. Science 216, 648–650.

    Article  CAS  PubMed  Google Scholar 

  • Phua, S.C., Tan, Y.L., Kok, A.M.Y., Senol, E., Chiam, C.J.H., Lee, C.Y., Peng, Y., Lim, A.T.J., Mohammad, H., Lim, J.X., et al. (2021). A distinct parabrachial-to-lateral hypothalamus circuit for motivational suppression of feeding by nociception. Sci Adv 7, eabe4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisa, M. (1988). Motor somatotopy in the striatum of rat: manipulation, biting and gait. Behav Brain Res 27, 21–35.

    Article  CAS  PubMed  Google Scholar 

  • Qian, J., Hu, Q., Wan, Y., Li, T., Wu, M., Ren, Z., and Yu, D. (2013). Prevalence of eating disorders in the general population: a systematic review. Shanghai Arch Psychiatry 25, 212–223.

    PubMed  PubMed Central  Google Scholar 

  • Redgrave, P., Dean, P., Souki, W., and Lewis, G. (1981). Gnawing and changes in reactivity produced by microinjections of picrotoxin into the superior colliculus of rats. Psychopharmacology 75, 198–203.

    Article  CAS  PubMed  Google Scholar 

  • Reinel, C.P., and Schuster, S. (2018). Rapid depth perception in hunting archerfish I. The predictive C-starts use an independent estimate of target height. J Exp Biol 221.

  • Rhoades, R.W., Fish, S.E., Chiaia, N.L., Bennett-Clarke, C., and Mooney, R.D. (1989). Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 289, 641–656.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, G.S., Pfaus, J.G., Atkinson, L.J., Matsumura, H., Phillips, A.G., and Fibiger, H.C. (1991). Sexual behavior increases c-fos expression in the forebrain of the male rat. Brain Res 564, 352–357.

    Article  CAS  PubMed  Google Scholar 

  • Rogers-Carter, M.M., Varela, J.A., Gribbons, K.B., Pierce, A.F., McGoey, M.T., Ritchey, M., and Christianson, J.P. (2018). Insular cortex mediates approach and avoidance responses to social affective stimuli. Nat Neurosci 21, 404–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root, C.M., Denny, C.A., Hen, R., and Axel, R. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature 515, 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseberry, T.K., Lee, A.M., Lalive, A.L., Wilbrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, M.A., and Stuber, G.D. (2018). Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab 27, 42–56.

    Article  CAS  PubMed  Google Scholar 

  • Rossier, D., La Franca, V., Salemi, T., Natale, S., and Gross, C.T. (2021). A neural circuit for competing approach and defense underlying prey capture. Proc Natl Acad Sci USA 118, e2013411118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggiero, D.A., Underwood, M.D., Rice, P.M., Mann, J.J., and Arango, V. (1999). Corticotropic-releasing hormone and serotonin interact in the human brainstem: behavioral implications. Neuroscience 91, 1343–1354.

    Article  CAS  PubMed  Google Scholar 

  • Safer, D.L., Telch, C.F., and Agras, W.S. (2001). Dialectical behavior therapy for bulimia nervosa. Am J Psychiatry 158, 632–634.

    Article  CAS  PubMed  Google Scholar 

  • Sahibzada, N., Dean, P., and Redgrave, P. (1986). Movements resembling orientation or avoidance elicited by electrical stimulation of the superior colliculus in rats. J Neurosci 6, 723–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai, K., Akiyama, M., Cai, B., Scott, A., Han, B.X., Takatoh, J., Sigrist, M., Arber, S., and Wang, F. (2013). The organization of submodality-specific touch afferent inputs in the vibrissa column. Cell Rep 5, 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, M. (2005). Properties of Barrington’s neurones in cats: units that fire inversely with micturition contraction. Brain Res 1033, 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Scalia, F., and Winans, S.S. (1975). The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J Comp Neurol 161, 31–55.

    Article  CAS  PubMed  Google Scholar 

  • Scherag, S., Hebebrand, J., and Hinney, A. (2010). Eating disorders: the current status of molecular genetic research. Eur Child Adolesc Psychiatry 19, 211–226.

    Article  PubMed  Google Scholar 

  • Schiavo, J.K., Valtcheva, S., Bair-Marshall, C.J., Song, S.C., Martin, K.A., and Froemke, R.C. (2020). Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature 587, 426–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schienle, A., Schäfer, A., Hermann, A., and Vaitl, D. (2009). Binge-eating disorder: reward sensitivity and brain activation to images of food. Biol Psychiatry 65, 654–661.

    Article  PubMed  Google Scholar 

  • Schreiber, L.R.N., Odlaug, B.L., and Grant, J.E. (2013). The overlap between binge eating disorder and substance use disorders: Diagnosis and neurobiology. J Behav Addict 2, 191–198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seizert, C.A. (2018). The neurobiology of the male sexual refractory period. Neurosci Biobehav Rev 92, 350–377.

    Article  PubMed  Google Scholar 

  • Sgritta, M., Dooling, S.W., Buffington, S.A., Momin, E.N., Francis, M.B., Britton, R.A., and Costa-Mattioli, M. (2019). Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron 101, 246–259.e6.

    Article  CAS  PubMed  Google Scholar 

  • Shaikh, M.B., Barrett, J.A., and Siegel, A. (1987). The pathways mediating affective defense and quiet biting attack behavior from the midbrain central gray of the cat: an autoradiographic study. Brain Res 437, 9–25.

    Article  CAS  PubMed  Google Scholar 

  • Shang, C., Chen, Z., Liu, A., Li, Y., Zhang, J., Qu, B., Yan, F., Zhang, Y., Liu, W., Liu, Z., et al. (2018). Divergent midbrain circuits orchestrate escape and freezing responses to looming stimuli in mice. Nat Commun 9, 1232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shang, C., Liu, A., Li, D., Xie, Z., Chen, Z., Huang, M., Li, Y., Wang, Y., Shen, W.L., and Cao, P. (2019). A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nat Neurosci 22, 909–920.

    Article  CAS  PubMed  Google Scholar 

  • Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., Li, D., and Cao, P. (2015). A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348, 1472–1477.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, L.E., and Insel, T.R. (1989). Ontogeny of oxytocin receptors in rat forebrain: a quantitative study. Synapse 4, 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Shimura, T., Yamamoto, T., and Shimokochi, M. (1994). The medial preoptic area is involved in both sexual arousal and performance in male rats: re-evaluation of neuron activity in freely moving animals. Brain Res 640, 215–222.

    Article  CAS  PubMed  Google Scholar 

  • Simerly, R.B., and Swanson, L.W. (1988). Projections of the medial preoptic nucleus: A Phaseolus vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270, 209–242.

    Article  CAS  PubMed  Google Scholar 

  • Skeen, L.C., and Hall, W.C. (1977). Efferent projections of the main and the accessory olfactory bulb in the tree shrew (Tupaia glis). J Comp Neurol 172, 1–35.

    Article  CAS  PubMed  Google Scholar 

  • Slomski, A. (2015). ADHD drug decreased binge eating. JAMA 313, 1200.

    Google Scholar 

  • Soden, M.E., Miller, S.M., Burgeno, L.M., Phillips, P.E.M., Hnasko, T.S., and Zweifel, L.S. (2016). Genetic isolation of hypothalamic neurons that regulate context-specific male social behavior. Cell Rep 16, 304–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagkourakis, S., Spigolon, G., Williams, P., Protzmann, J., Fisone, G., and Broberger, C. (2018). A neural network for intermale aggression to establish social hierarchy. Nat Neurosci 21, 834–842.

    Article  CAS  PubMed  Google Scholar 

  • Stein, B.E., and Stanford, T.R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9, 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Stein, B.E., Stanford, T.R., and Rowland, B.A. (2014). Development of multisensory integration from the perspective of the individual neuron. Nat Rev Neurosci 15, 520–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternson, S.M., and Eiselt, A.K. (2017). Three pillars for the neural control of appetite. Annu Rev Physiol 79, 401–423.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, W.F., Van Rooyen, J.B., Cundiff, G.W., Abrams, P., Herzog, A.R., Corey, R., Hunt, T.L., and Wein, A.J. (2003). Prevalence and burden of overactive bladder in the United States. World J Urol 20, 327–336.

    Article  CAS  PubMed  Google Scholar 

  • Stowers, L., Holy, T.E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295, 1493–1500.

    Article  CAS  PubMed  Google Scholar 

  • Stowers, L., and Liberles, S.D. (2016). State-dependent responses to sex pheromones in mouse. Curr Opin Neurobiol 38, 74–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuber, G.D., and Wise, R.A. (2016). Lateral hypothalamic circuits for feeding and reward. Nat Neurosci 19, 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stunkard, A., Berkowitz, R., Tanrikut, C., Reiss, E., and Young, L. (1996). D-Fenfluramine treatment of binge eating disorder. Am J Psychiatry 153, 1455–1459.

    Article  CAS  PubMed  Google Scholar 

  • Sun, F., Zeng, J., Jing, M., Zhou, J., Feng, J., Owen, S.F., Luo, Y., Li, F., Wang, H., Yamaguchi, T., et al. (2018). A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson, S.A., Crow, S.J., Le Grange, D., Swendsen, J., and Merikangas, K.R. (2011). Prevalence and correlates of eating disorders in adolescents. Arch Gen Psychiatry 68, 714–723.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinburn, B., Sacks, G., and Ravussin, E. (2009). Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr 90, 1453–1456.

    Article  CAS  PubMed  Google Scholar 

  • Swinburn, B.A., Sacks, G., Hall, K.D., McPherson, K., Finegood, D.T., Moodie, M.L., and Gortmaker, S.L. (2011). The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804–814.

    Article  PubMed  Google Scholar 

  • Takács, S., Gries, R., and Gries, G. (2017). Sex hormones function as sex attractant pheromones in house mice and brown rats. Chembiochem 18, 1391–1395.

    Article  PubMed  Google Scholar 

  • Takatoh, J., Prevosto, V., and Wang, F. (2018). Vibrissa sensory neurons: Linking distinct morphology to specific physiology and function. Neuroscience 368, 109–114.

    Article  CAS  PubMed  Google Scholar 

  • Tan, Y., Singhal, S.M., Harden, S.W., Cahill, K.M., Nguyen, D.T.M., Colon-Perez, L.M., Sahagian, T.J., Thinschmidt, J.S., de Kloet, A.D., Febo, M., et al. (2019). Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition. J Neurosci 39, 3249–3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, A., Furubayashi, T., Arai, M., Inoue, D., Kimura, S., Kiriyama, A., Kusamori, K., Katsumi, H., Yutani, R., Sakane, T., et al. (2018). Delivery of oxytocin to the brain for the treatment of autism spectrum disorder by nasal application. Mol Pharm 15, 1105–1111.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y., Benusiglio, D., Lefevre, A., Hilfiger, L., Althammer, F., Bludau, A., Hagiwara, D., Baudon, A., Darbon, P., Schimmer, J., et al. (2020). Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nat Neurosci 23, 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, A.W., Vanwalleghem, G.C., Heap, L.A., and Scott, E.K. (2016). Functional profiles of visual-, auditory-, and water flow-responsive neurons in the zebrafish tectum. Curr Biol 26, 743–754.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, R.J., Parker, K.J., Hallmayer, J.F., Waugh, C.E., and Gotlib, I. H. (2011). Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology 36, 144–147.

    Article  CAS  PubMed  Google Scholar 

  • Tinberge, N.N. (1954). The study of instinct. J Nerv Mental Dis 120, 141.

    Article  Google Scholar 

  • Tirindelli, R. (2021). Coding of pheromones by vomeronasal receptors. Cell Tissue Res 383, 367–386.

    Article  CAS  PubMed  Google Scholar 

  • Tirko, N.N., Eyring, K.W., Carcea, I., Mitre, M., Chao, M.V., Froemke, R. C., and Tsien, R.W. (2018). Oxytocin transforms firing mode of CA2 hippocampal neurons. Neuron 100, 593–608.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torruella-Suárez, M.L., Vandenberg, J.R., Cogan, E.S., Tipton, G.J., Teklezghi, A., Dange, K., Patel, G.K., McHenry, J.A., Hardaway, J. A., Kantak, P.A., et al. (2020). Manipulations of central amygdala neurotensin neurons alter the consumption of ethanol and sweet fluids in mice. J Neurosci 40, 632–647.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovote, P., Esposito, M.S., Botta, P., Chaudun, F., Fadok, J.P., Markovic, M., Wolff, S.B.E., Ramakrishnan, C., Fenno, L., Deisseroth, K., et al. (2016). Midbrain circuits for defensive behaviour. Nature 534, 206–212.

    Article  CAS  PubMed  Google Scholar 

  • Tribollet, E., Charpak, S., Schmidt, A., Dubois-Dauphin, M., and Dreifuss, J.J. (1989). Appearance and transient expression of oxytocin receptors in fetal, infant, and peripubertal rat brain studied by autoradiography and electrophysiology. J Neurosci 9, 1764–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi, C.A., and Bollmann, J.H. (2013). Visually driven chaining of elementary swim patterns into a goal-directed motor sequence: a virtual reality study of zebrafish prey capture. Front Neural Circuits 7, 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tryon, V.L., and Mizumori, S.J.Y. (2018). A novel role for the periaqueductal gray in consummatory behavior. Front Behav Neurosci 12, 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulogdi, A., Biro, L., Barsvari, B., Stankovic, M., Haller, J., and Toth, M. (2015). Neural mechanisms of predatory aggression in rats— implications for abnormal intraspecific aggression. Behav Brain Res 283, 108–115.

    Article  PubMed  Google Scholar 

  • Unger, E.K., Burke Jr, K.J., Yang, C.F., Bender, K.J., Fuller, P.M., and Shah, N.M. (2015). Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep 10, 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt, R.J., and Sachs, B.D. (1979). Penile reflexes and copulatory behavior in male rats following lesions in the bed nucleus of the stria terminalis. Brain Res Bull 4, 131–133.

    Article  CAS  PubMed  Google Scholar 

  • Valentino, R.J., Page, M.E., Luppi, P.H., Zhu, Y., Van Bockstaele, E., and Aston-Jones, G. (1994). Evidence for widespread afferents to barrington’s nucleus, a brainstem region rich in corticotropin-releasing hormone neurons. Neuroscience 62, 125–143.

    Article  CAS  PubMed  Google Scholar 

  • Valtcheva, S., Issa, H.A., Martin, K.A., Jung, K., Kwon, H.B., and Froemke, R.C. (2021). Neural circuitry for maternal oxytocin release induced by infant cries. bioRxiv, doi: https://doi.org/10.1101/2021.03.25.436883.

  • Van Daele, D.J., Fazan, V.P.S., Agassandian, K., and Cassell, M.D. (2011). Amygdala connections with jaw, tongue and laryngo-pharyngeal premotor neurons. Neuroscience 177, 93–113.

    Article  CAS  PubMed  Google Scholar 

  • Van der Horst, V.G.J.M., and Holstege, G. (1998). Sensory and motor components of reproductive behavior: pathways and plasticity. Behav Brain Res 92, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • van Leengoed, E., Kerker, E., and Swanson, H.H. (1987). Inhibition of post-partum maternal behaviour in the rat by injecting an oxytocin antagonist into the cerebral ventricles. J Endocrinol 112, 275–282.

    Article  CAS  PubMed  Google Scholar 

  • van Wyk, M., Taylor, W.R., and Vaney, D.I. (2006). Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J Neurosci 26, 13250–13263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaughan, E., and Fisher, A.E. (1962). Male sexual behavior induced by intracranial electrical stimulation. Science 137, 758–760.

    Article  CAS  PubMed  Google Scholar 

  • Veening, J.G., and Coolen, L.M. (2014). Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 121, 170–183.

    Article  CAS  PubMed  Google Scholar 

  • Veening, J.G., Coolen, L.M., de Jong, T.R., Joosten, H.W., de Boer, S.F., Koolhaas, J.M., and Olivier, B. (2005). Do similar neural systems subserve aggressive and sexual behaviour in male rats? Insights from c-Fos and pharmacological studies. Eur J Pharmacol 526, 226–239.

    Article  CAS  PubMed  Google Scholar 

  • Verstegen, A.M.J., Vanderhorst, V., Gray, P.A., Zeidel, M.L., and Geerling, J.C. (2017). Barrington’s nucleus: neuroanatomic landscape of the mouse “pontine micturition center”. J Comp Neurol 525, 2287–2309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verstegen, A.M.J., Klymko, N., Zhu, L., Mathai, J.C., Kobayashi, R., Venner, A., Ross, R.A., VanderHorst, V.G., Arrigoni, E., Geerling, J.C., et al. (2019). Non-Crh glutamatergic neurons in Barrington’s nucleus control micturition via glutamatergic afferents from the midbrain and hypothalamus. Curr Biol 29, 2775–2789.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacker, D.W., and Ludwig, M. (2012). Vasopressin, oxytocin, and social odor recognition. Horm Behav 61, 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, D.J., Greenberg, D.S., Sawinski, J., Rulla, S., Notaro, G., and Kerr, J.N.D. (2013). Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498, 65–69.

    Article  CAS  PubMed  Google Scholar 

  • Walum, H., and Young, L.J. (2018). The neural mechanisms and circuitry of the pair bond. Nat Rev Neurosci 19, 643–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Zhu, J., Zhu, H., Zhang, Q., Lin, Z., and Hu, H. (2011). Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334, 693–697.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Sarnaik, R., Rangarajan, K., Liu, X., and Cang, J. (2010). Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J Neurosci 30, 16573–16584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Chen, I.Z., and Lin, D. (2015a). Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Liu, M., Segraves, M.A., and Cang, J. (2015b). Visual experience is required for the development of eye movement maps in the mouse superior colliculus. J Neurosci 35, 12281–12286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Chou, X., Peng, B., Shen, L., Huang, J.J., Zhang, L.I., and Tao, H.W. (2019). A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta. eLife 8.

  • Wang, X., Chou, X.L., Zhang, L.I., and Tao, H.W. (2020). Zona incerta: an integrative node for global behavioral modulation. Trends Neuroscis 43, 82–87.

    Article  CAS  Google Scholar 

  • Waterson, M.J., and Horvath, T.L. (2015). Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab 22, 962–970.

    Article  CAS  PubMed  Google Scholar 

  • Wee, C.L., Song, E.Y., Johnson, R.E., Ailani, D., Randlett, O., Kim, J.Y., Nikitchenko, M., Bahl, A., Yang, C.T., Ahrens, M.B., et al. (2019). A bidirectional network for appetite control in larval zebrafish. eLife 8, e43775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei, D., Talwar, V., and Lin, D. (2021). Neural circuits of social behaviors: innate yet flexible. Neuron 109, 1600–1620.

    Article  CAS  PubMed  Google Scholar 

  • Wei, P., Liu, N., Zhang, Z., Liu, X., Tang, Y., He, X., Wu, B., Zhou, Z., Liu, Y., Li, J., et al. (2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 6, 6756.

    Article  CAS  PubMed  Google Scholar 

  • Wei, Y.C., Wang, S.R., Jiao, Z.L., Zhang, W., Lin, J.K., Li, X.Y., Li, S.S., Zhang, X., and Xu, X.H. (2018). Medial preoptic area in mice is capable of mediating sexually dimorphic behaviors regardless of gender. Nat Commun 9, 279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Westby, G.W.M., Keay, K.A., Redgrave, P., Dean, P., and Bannister, M. (1990). Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp Brain Res 81, 626–638.

    Article  CAS  PubMed  Google Scholar 

  • Westphal, R.E., and O’Malley, D.M. (2013). Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish. Front Neural Circuits 7, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weygandt, M., Schaefer, A., Schienle, A., and Haynes, J.D. (2012). Diagnosing different binge-eating disorders based on reward-related brain activation patterns. Hum Brain Mapp 33, 2135–2146.

    Article  PubMed  Google Scholar 

  • Whishaw, I.Q., and Kolb, B. (1983). Can male decorticate rats copulate? Behav Neurosci 97, 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Whishaw, I.Q., and Kolb, B. (1985). The mating movements of male decorticate rats: evidence for subcortically generated movements by the male but regulation of approaches by the female. Behav Brain Res 17, 171–191.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A.M., Lowe, J.C., Roskilly, K., Hudson, P.E., Golabek, K.A., and McNutt, J.W. (2013). Locomotion dynamics of hunting in wild cheetahs. Nature 498, 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, J.J., Alexandre, N., Trentin, C., and Tripodi, M. (2018). Three-dimensional representation of motor space in the mouse superior colliculus. Curr Biol 28, 1744–1755.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Chen, C., Chen, M., Qian, K., Lv, X., Wang, H., Jiang, L., Yu, L., Zhuo, M., and Qiu, S. (2020). The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun 11, 640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., Autry, A.E., Bergan, J.F., Watabe-Uchida, M., and Dulac, C.G. (2014). Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi, D., Gandhi, N., Lai, M., and Kublaoui, B.M. (2012). Ablation of Sim1 neurons causes obesity through hyperphagia and reduced energy expenditure. PLoS ONE 7, e36453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, L., Priest, M.F., and Kozorovitskiy, Y. (2018). Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 7, e33892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, Z., Wang, M., Liu, Z., Shang, C., Zhang, C., Sun, L., Gu, H., Ran, G., Pei, Q., Ma, Q., et al. (2021). Transcriptomic encoding of sensorimotor transformation in the midbrain. eLife 10, e69825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, A.W., Kaelin, C.B., Morton, G.J., Ogimoto, K., Stanhope, K., Graham, J., Baskin, D.G., Havel, P., Schwartz, M.W., and Barsh, G.S. (2005). Effects of hypothalamic neurodegeneration on energy balance. PLoS Biol 3, e415.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, S., Yang, H., Menon, V., Lemire, A.L., Wang, L., Henry, F.E., Turaga, S.C., and Sternson, S.M. (2020). Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. (2013). Modular genetic control of innate behaviors. BioEssays 35, 421–424.

    Article  PubMed  Google Scholar 

  • Yamada, S., and Kawata, M. (2014). Identification of neural cells activated by mating stimulus in the periaqueductal gray in female rats. Front Neurosci 8, 421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, T., Wei, D., Song, S.C., Lim, B., Tritsch, N.X., and Lin, D. (2020). Posterior amygdala regulates sexual and aggressive behaviors in male mice. Nat Neurosci 23, 1111–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, C.F., Chiang, M.C., Gray, D.C., Prabhakaran, M., Alvarado, M., Juntti, S.A., Unger, E.K., Wells, J.A., and Shah, N.M. (2013). Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153, 896–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, T., and Shah, N.M. (2016). Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol 38, 89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, J., Zhang, Q., Liao, X., Li, Q., Liang, S., Li, X., Zhang, Y., Li, X., Wang, H., Qin, H., et al. (2018). A corticopontine circuit for initiation of urination. Nat Neurosci 21, 1541–1550.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J., Li, Q., Li, X., Qin, H., Liang, S., Liao, X., Chen, X., Li, W., and Yan, J. (2019). Simultaneous measurement of neuronal activity in the pontine micturition center and cystometry in freely moving mice. Front Neurosci 13, 663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, S., Bergan, J., Lanjuin, A., and Dulac, C. (2017). Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 6, e31373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yasui, Y., Tsumori, T., Ando, A., Domoto, T., Kayahara, T., and Nakano, K. (1994). Descending projections from the superior colliculus to the reticular formation around the motor trigeminal nucleus and the parvicellular reticular formation of the medulla oblongata in the rat. Brain Res 656, 420–426.

    Article  CAS  PubMed  Google Scholar 

  • Yeo, G.S.H., and Heisler, L.K. (2012). Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 15, 1343–1349.

    Article  CAS  PubMed  Google Scholar 

  • Yeomans, D.C., Hanson, L.R., Carson, D.S., Tunstall, B.J., Lee, M.R., Tzabazis, A.Z., Jacobs, D., and Frey II, W.H. (2021). Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Transl Psychiatry 11, 388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, S.B.M., Tu, J.C., Piantadosi, S.T., and Hayden, B.Y. (2020). The neural basis of predictive pursuit. Nat Neurosci 23, 252–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida, M., Takayanagi, Y., Inoue, K., Kimura, T., Young, L.J., Onaka, T., and Nishimori, K. (2009). Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci 29, 2259–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura, R., Kiyama, H., Kimura, T., Araki, T., Maeno, H., Tanizawa, O., and Tohyama, M. (1993). Localization of oxytocin receptor messenger ribonucleic acid in the rat brain. Endocrinology 133, 1239–1246.

    Article  CAS  PubMed  Google Scholar 

  • Young, L.J., Lim, M.M., Gingrich, B., and Insel, T.R. (2001). Cellular mechanisms of social attachment. Horm Behav 40, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Young, L.J., and Wang, Z. (2004). The neurobiology of pair bonding. Nat Neurosci 7, 1048–1054.

    Article  CAS  PubMed  Google Scholar 

  • Yu, H., Xiang, X., Chen, Z., Wang, X., Dai, J., Wang, X., Huang, P., Zhao, Z.D., Shen, W.L., and Li, H. (2021). Periaqueductal gray neurons encode the sequential motor program in hunting behavior of mice. Nat Commun 12, 6523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zahodne, L.B., Susatia, F., Bowers, D., Ong, T.L., Jacobson, C.E., Okun, M.S., Rodriguez, R.L., Malaty, I.A., Foote, K.D., and Fernandez, H.H. (2011). Binge eating in Parkinson’s disease: prevalence, correlates and the contribution of deep brain stimulation. J Neuropsychiatry Clin Neurosci 23, 56–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zderic, S.A. (2019). Neuroscience: a new golden age for neurourology. Curr Biol 29, R880–R883.

    Article  CAS  PubMed  Google Scholar 

  • Zermann, D.H., Ishigooka, M., Doggweiler, R., and Schmidt, R.A. (1998). Central autonomic innervation of the lower urinary tract—a neuroanatomy study. World J Urol 16, 417–422.

    Article  CAS  PubMed  Google Scholar 

  • Zha, X., Wang, L., Jiao, Z.L., Yang, R.R., Xu, C., and Xu, X.H. (2020). VMHvl-projecting Vglut1+ neurons in the posterior amygdala gate territorial aggression. Cell Rep 31, 107517.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Qiu, L., Xiao, W., Ni, H., Chen, L., Wang, F., Mai, W., Wu, J., Bao, A., Hu, H., et al. (2021). Reconstruction of the hypothalamoneurohypophysial system and functional dissection of magnocellular oxytocin neurons in the brain. Neuron 109, 331–346.e7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., and van den Pol, A.N. (2017). Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation. Science 356, 853–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Kim, I.J., Sanes, J.R., and Meister, M. (2012). The most numerous ganglion cell type of the mouse retina is a selective feature detector. Proc Natl Acad Sci USA 109, E2391–E2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z.D., Chen, Z., Xiang, X., Hu, M., Xie, H., Jia, X., Cai, F., Cui, Y., Chen, Z., Qian, L., et al. (2019). Zona incerta GABAergic neurons integrate prey-related sensory signals and induce an appetitive drive to promote hunting. Nat Neurosci 22, 921–932.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, M., Liu, Z., Melin, M.D., Ng, Y.H., Xu, W., and Südhof, T.C. (2018). A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory. Nat Neurosci 21, 1515–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Liu, X., Chen, S., Zhang, Z., Liu, Y., Montardy, Q., Tang, Y., Wei, P., Liu, N., Li, L., et al. (2019). A VTA GABAergic neural circuit mediates visually evoked innate defensive responses. Neuron 103, 473–488.e6.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, C., Jiang, Z., Xu, Y., Cai, Z.L., Jiang, Q., Xu, Y., Xue, M., Arenkiel, B.R., Wu, Q., Shu, G., et al. (2020). Profound and redundant functions of arcuate neurons in obesity development. Nat Metab 2, 763–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFA0104200), the National Natural Science Foundation of China (31871066, 31922028, 31900721 and 32122039), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB32000000), and the Shanghai Science and Technology Committee of Shanghai City (19140903800 and 21XD1422700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Chen, Peng Cao, Yu Fu, Zhihua Gao, Wei L. Shen or Xiao-Hong Xu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Jiao, ZL., Senol, E. et al. Neural circuit control of innate behaviors. Sci. China Life Sci. 65, 466–499 (2022). https://doi.org/10.1007/s11427-021-2043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2043-2

Keywords

Navigation