Skip to main content
Log in

Individual variation in buffalo somatic cell cloning efficiency is related to glycolytic metabolism

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Mammalian individuals differ in their somatic cell cloning efficiency, but the mechanisms leading to this variation is poorly understood. Here we found that high cloning efficiency buffalo fetal fibroblasts (BFFs) displayed robust energy metabolism, looser chromatin structure, high H3K9 acetylation and low heterochromatin protein 1α (HP1α) expression. High cloning efficiency BFFs had more H3K9ac regions near to the upstream of glycolysis genes by ChIP-seq, and involved more openness loci related to glycolysis genes through ATAC-seq. The expression of these glycolysis genes was also found to be higher in high cloning efficiency BFFs by qRT-PCR. Two key enzymes of glycolysis, PDKs and LDH, were confirmed to be associated with histone acetylation and chromatin openness of BFFs. Treatment of low cloning efficiency BFFs with PS48 (activator of PDK1) resulted in an increase in the intracellular lactate production and H3K9 acetylation, decrease in histone deacetylase activity and HP1α expression, less condensed chromatin structure and more cloning embryos developing to blastocysts. These results indicate that the cloning efficiency of buffalo somatic cells is associated with their glycolytic metabolism and chromatin structure, and can be improved by increasing glycolytic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 109, 21.29.1–21.29.9.

    Article  Google Scholar 

  • Cao, Y., Guo, W.T., Tian, S., He, X., Wang, X.W., Liu, X., Gu, K.L., Ma, X., Huang, D., Hu, L., et al. (2015). miR-290/371-Mbd2-Myc circuit regulates glycolytic metabolism to promote pluripotency. EMBO J 34, 609–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, Y.G., Matoba, S., Liu, Y., Eum, J.H., Lu, F., Jiang, W., Lee, J.E., Sepilian, V., Cha, K.Y., Lee, D.R., et al. (2015). Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell 17, 758–766.

    Article  CAS  PubMed  Google Scholar 

  • Djekidel, M.N., Inoue, A., Matoba, S., Suzuki, T., Zhang, C., Lu, F., Jiang, L., and Zhang, Y. (2018). Reprogramming of chromatin accessibility in somatic cell nuclear transfer is DNA replication independent. Cell Rep 23, 1939–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe, D.R., Collins, L.B., Wali, A., Bigler, R., Sun, W., and Bultman, S.J. (2012). The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48, 612–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., Zhao, X., Li, Z., Luo, C., Ruan, Z., Xu, J., Shen, P., Deng, Y., Jiang, J., Shi, D., et al. (2021). Histone demethylase KDM4D could improve the developmental competence of buffalo (Bubalus Bubalis) somatic cell nuclear transfer (SCNT) embryos. Microsc Microanal 27, 409–419.

    Article  CAS  PubMed  Google Scholar 

  • Folmes, C.D.L., Nelson, T.J., Martinez-Fernandez, A., Arrell, D.K., Lindor, J.Z., Dzeja, P.P., Ikeda, Y., Perez-Terzic, C., and Terzic, A. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14, 264–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, H., Zhang, W., Yuan, Q., Niu, M., Zhou, F., Qiu, Q., Mao, G., Wang, H., Wen, L., Sun, M., et al. (2018). PAK1 promotes the proliferation and inhibits apoptosis of human spermatogonial stem cells via PDK1/KDR/ZNF367 and ERK1/2 and AKT pathways. Mol Ther Nucleic Acids 12, 769–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Munoz, E., and Cibelli, J.B. (2018). Somatic cell reprogramming informed by the oocyte. Stem Cells Dev 27, 871–887.

    Article  PubMed  Google Scholar 

  • Guo, S., Zi, X., Schulz, V.P., Cheng, J., Zhong, M., Koochaki, S.H.J., Megyola, C.M., Pan, X., Heydari, K., Weissman, S.M., et al. (2014). Nonstochastic reprogramming from a privileged somatic cell state. Cell 156, 649–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jafarpour, F., Hosseini, S.M., Hajian, M., Forouzanfar, M., Ostadhosseini, S., Abedi, P., Gholami, S., Ghaedi, K., Gourabi, H., Shahverdi, A.H., et al. (2011). Somatic cell-induced hyperacetylation, but not hypomethylation, positively and reversibly affects the efficiency of in vitro cloned blastocyst production in cattle. Cell Reprogram 13, 483–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurome, M., Geistlinger, L., Kessler, B., Zakhartchenko, V., Klymiuk, N., Wuensch, A., Richter, A., Baehr, A., Kraehe, K., Burkhardt, K., et al. (2013). Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 13, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latham, T., Mackay, L., Sproul, D., Karim, M., Culley, J., Harrison, D.J., Hayward, L., Langridge-Smith, P., Gilbert, N., and Ramsahoye, B.H. (2012). Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res 40, 4794–4803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Egervari, G., Wang, Y., Berger, S.L., and Lu, Z. (2018a). Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 19, 563–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Jiang, J., Liu, W., Wang, H., Zhao, L., Liu, S., Li, P., Zhang, S., Sun, C., Wu, Y., et al. (2018b). MicroRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci USA 115, E10849–E10858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Luo, Y., Zheng, L., Liu, Q., Yang, Z., Wang, Y., Su, J., Quan, F., and Zhang, Y. (2013a). Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer. Transgenic Res 22, 893–903.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Wang, Y., Su, J., Luo, Y., Quan, F., and Zhang, Y. (2013b). Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer. Reprod Domest Anim 48, 660–664.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Liu, X., Wang, C., Gao, Y., Gao, R., Kou, X., Zhao, Y., Li, J., Wu, Y., Xiu, W., et al. (2016). Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov 2, 16010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, C.R., Westhusin, M.E., and Golding, M.C. (2014). Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 81, 183–193.

    Article  CAS  PubMed  Google Scholar 

  • Lu, F., Shi, D., Wei, J., Yang, S., and Wei, Y. (2005). Development of embryos reconstructed by interspecies nuclear transfer of adult fibroblasts between buffalo (Bubalus bubalis) and cattle (Bos indicus). Theriogenology 64, 1309–1319.

    Article  PubMed  Google Scholar 

  • Luo, C., Lu, F., Wang, X., Wang, Z., Li, X., Gong, F., Jiang, J., Liu, Q., and Shi, D. (2013). Treatment of donor cells with trichostatin A improves in vitro development and reprogramming of buffalo (Bubalus bubalis) nucleus transfer embryos. Theriogenology 80, 878–886.

    Article  CAS  PubMed  Google Scholar 

  • Matoba, S., Liu, Y., Lu, F., Iwabuchi, K.A., Shen, L., Inoue, A., and Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matoba, S., and Zhang, Y. (2018). Somatic cell nuclear transfer reprogramming: mechanisms and applications. Cell Stem Cell 23, 471–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussaieff, A., Rouleau, M., Kitsberg, D., Cohen, M., Levy, G., Barasch, D., Nemirovski, A., Shen-Orr, S., Laevsky, I., Amit, M., et al. (2015). Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21, 392–402.

    Article  CAS  PubMed  Google Scholar 

  • No, J.G., Hur, T.Y., Zhao, M., Lee, S., Choi, M.K., Nam, Y.S., Yeom, D.H., Im, G.S., and Kim, D.H. (2018). Scriptaid improves the reprogramming of donor cells and enhances canine-porcine interspecies embryo development. Reprod Biol 18, 18–26.

    Article  PubMed  Google Scholar 

  • Powell, A.M., Talbot, N.C., Wells, K.D., Kerr, D.E., Pursel, V.G., and Wall, R.J. (2004). Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol Reprod 71, 210–216.

    Article  CAS  PubMed  Google Scholar 

  • Prigione, A., Rohwer, N., Hoffmann, S., Mlody, B., Drews, K., Bukowiecki, R., Blümlein, K., Wanker, E.E., Ralser, M., Cramer, T., et al. (2014). HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2. Stem Cells 32, 364–376.

    Article  CAS  PubMed  Google Scholar 

  • Rissi, V.B., Glanzner, W.G., Mujica, L.K.S., Antoniazzi, A.Q., Gonçalves, P.B.D., and Bordignon, V. (2016). Effect of cell cycle interactions and inhibition of histone deacetylases on development of porcine embryos produced by nuclear transfer. Cell Reprogram 18, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Sangalli, J.R., Chiaratti, M.R., De Bem, T.H.C., de Araújo, R.R., Bressan, F.F., Sampaio, R.V., Perecin, F., Smith, L.C., King, W.A., and Meirelles, F.V. (2014). Development to term of cloned cattle derived from donor cells treated with valproic acid. PLoS ONE 9, e101022.

    Article  PubMed  PubMed Central  Google Scholar 

  • Selokar, N.L., Saini, M., Palta, P., Chauhan, M.S., Manik, R.S., and Singla, S.K. (2018). Cloning of buffalo, a highly valued livestock species of south and southeast asia: any achievements? Cell Reprogram 20, 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Shi, D., Lu, F., Wei, Y., Cui, K., Yang, S., Wei, J., and Liu, Q. (2007). Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77, 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Shimazu, T., Hirschey, M.D., Newman, J., He, W., Shirakawa, K., Le Moan, N., Grueter, C.A., Lim, H., Saunders, L.R., Stevens, R.D., et al. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Sun, J.M., Cui, K.Q., Li, Z.P., Lu, X.R., Xu, Z.F., Liu, Q.Y., Huang, B., and Shi, D.S. (2017). Suberoylanilide hydroxamic acid, a novel histone deacetylase inhibitor, improves the development and acetylation level of miniature porcine handmade cloning embryos. Reprod Dom Anim 52, 763–774.

    Article  CAS  Google Scholar 

  • Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, W., Ciszewski, W.M., and Kania, K.D. (2015). L- and D-lactate enhance DNA repair and modulate the resistance of cervical carcinoma cells to anticancer drugs via histone deacetylase inhibition and hydroxycarboxylic acid receptor 1 activation. Cell Commun Signal 13, 36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, Y.J., Zhang, Y.L., Zhou, Z.R., Jia, R.X., Li, M., Song, H., Wang, Z.Y., Wang, L.Z., Zhang, G.M., You, J.H., et al. (2012). Efficiency of donor cell preparation and recipient oocyte source for production of transgenic cloned dairy goats harboring human lactoferrin. Theriogenology 78, 583–592.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Gao, Y., Zheng, X., Liu, C., Dong, S., Li, R., Zhang, G., Wei, Y., Qu, H., Li, Y., et al. (2019). Histone modifications regulate chromatin compartmentalization by contributing to a phase separation mechanism. Mol Cell 76, 646–659.e6.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Holt, M.V., and Young, N.L. (2018). Early butyrate induced acetylation of histone H4 is proteoform specific and linked to methylation state. Epigenetics 13, 519–535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani, N.A., and Hong, S.B. (2018). Source, treatment and type of nuclear donor cells influences in vitro and in vivo development of embryos cloned by somatic cell nuclear transfer in camel (Camelus dromedarius). Theriogenology 106, 186–191.

    Article  PubMed  Google Scholar 

  • Yang, G., Zhang, L., Liu, W., Qiao, Z., Shen, S., Zhu, Q., Gao, R., Wang, M., Wang, M., Li, C., et al. (2021). Dux-mediated corrections of aberrant H3K9ac during 2-cell genome activation optimize efficiency of somatic cell nuclear transfer. Cell Stem Cell 28, 150–163.e5.

    Article  PubMed  Google Scholar 

  • Yang, L., Liu, X., Song, L., Di, A., Su, G., Bai, C., Wei, Z., and Li, G. (2020). Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep 21.

  • Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., et al. (2019). Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, S., Li, W., Zhou, H., Wei, W., Ambasudhan, R., Lin, T., Kim, J., Zhang, K., and Ding, S. (2010). Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7, 651–655.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31772597, 31972996, 31902125), and Guangxi Natural Science Foundation (2017GXNSFAA198311). We thank Dr Tengfei Zhu (Annoroad Gene Technology) for his helpful assistance on bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deshun Shi.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. The institutional and national guide for the care and use of animals was followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Wang, Z., Wang, J. et al. Individual variation in buffalo somatic cell cloning efficiency is related to glycolytic metabolism. Sci. China Life Sci. 65, 2076–2092 (2022). https://doi.org/10.1007/s11427-021-2039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2039-6

Keywords

Navigation