Skip to main content
Log in

Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The limited knowledge of genomic noncoding and regulatory regions has restricted our ability to decipher the genetic mechanisms underlying complex traits in pigs. In this study, we characterized the spatiotemporal landscape of putative enhancers and promoters and their target genes by combining H3K27ac-targeted ChIP-Seq and RNA-Seq in fetal (prenatal days 74–75) and adult (postnatal days 132–150) tissues (brain, liver, heart, muscle and small intestine) sampled from Asian aboriginal Bama Xiang and European highly selected Large White pigs of both sexes. We identified 101,290 H3K27ac peaks, marking 18,521 promoters and 82,769 enhancers, including peaks that were active across all tissues and developmental stages (which could indicate safe harbor locus for exogenous gene insertion) and tissue- and developmental stage-specific peaks (which regulate gene pathways matching tissue- and developmental stage-specific physiological functions). We found that H3K27ac and DNA methylation in the promoter region of the XIST gene may be involved in X chromosome inactivation and demonstrated the utility of the present resource for revealing the regulatory patterns of known causal genes and prioritizing candidate causal variants for complex traits in pigs. In addition, we identified an average of 1,124 super-enhancers per sample and found that they were more likely to show tissue-specific activity than ordinary peaks. We have developed a web browser to improve the accessibility of the results (http://segtp.jxau.edu.cn/pencode/?genome=susScr11).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuín, J.M., Pichel, J.C., Pena, T.F., and Amigo, J. (2015). BigBWA: approaching the Burrows-Wheeler aligner to Big Data technologies. Bioinformatics 31, 4003–4005.

    PubMed  Google Scholar 

  • Aiello, D., Patel, K., and Lasagna, E. (2018). The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim Genet 49, 505–519.

    Article  CAS  PubMed  Google Scholar 

  • Almalki, S.G., and Agrawal, D.K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson, L., Archibald, A.L., Bottema, C.D., Brauning, R., Burgess, S. C., Burt, D.W., Casas, E., Cheng, H.H., Clarke, L., Couldrey, C., et al. (2015). Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biol 16, 57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H., Pagès, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakroun, I., Yang, D., Girgis, J., Gunasekharan, A., Phenix, H., Kærn, M., and Blais, A. (2015). Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis. FASEB J 29, 4738–4755.

    Article  CAS  PubMed  Google Scholar 

  • Chan, R.Y.Y., Boudreau-Lariviere, C., Angus, L.M., Mankal, F.A., and Jasmin, B.J. (1999). An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers. Proc Natl Acad Sci USA 96, 4627–4632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charlet, J., Duymich, C.E., Lay, F.D., Mundbjerg, K., Dalsgaard Sørensen, K., Liang, G., and Jones, P.A. (2016). Bivalent regions of cytosine methylation and H3K27 acetylation suggest an active role for DNA methylation at enhancers. Mol Cell 62, 422–431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, I.C., Park, H.B., Ahn, J.S., Han, S.H., Lee, J.B., Lim, H.T., Yoo, C.K., Jung, E.J., Kim, D.H., Sun, W.S., et al. (2019). A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet 15, e1008279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107, 21931–21936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dedova, I., Harding, A., Sheedy, D., Garrick, T., Sundqvist, N., Hunt, C., Gillies, J., and Harper, C.G. (2009). The importance of brain banks for molecular neuropathological research: the New South Wales Tissue Resource Centre experience. Int J Mol Sci 10, 366–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Foissac, S., Djebali, S., Munyard, K., Vialaneix, N., Rau, A., Muret, K., Esquerré, D., Zytnicki, M., Derrien, T., Bardou, P., et al. (2019). Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol 17, 108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frantz, L.A.F., Schraiber, J.G., Madsen, O., Megens, H.J., Bosse, M., Paudel, Y., Semiadi, G., Meijaard, E., Li, N., Crooijmans, R.P.M.A., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol 14, R107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedrich, G., and Soriano, P. (1991). Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5, 1513–1523.

    Article  CAS  PubMed  Google Scholar 

  • Gallegos, J.E., and Rose, A.B. (2017). Intron DNA sequences can be more important than the proximal promoter in determining the site of transcript initiation. Plant Cell 29, 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georges, M., Charlier, C., and Hayes, B. (2019). Harnessing genomic information for livestock improvement. Nat Rev Genet 20, 135–156.

    Article  CAS  PubMed  Google Scholar 

  • Gong, H., Xiao, S., Li, W., Huang, T., Huang, X., Yan, G., Huang, Y., Qiu, H., Jiang, K., Wang, X., et al. (2019). Unravelling the genetic loci for growth and carcass traits in Chinese Bamaxiang pigs based on a 1.4 million SNP array. J Anim Breed Genet 136, 3–14.

    Article  PubMed  Google Scholar 

  • Gorkin, D.U., Barozzi, I., Zhao, Y., Zhang, Y., Huang, H., Lee, A.Y., Li, B., Chiou, J., Wildberg, A., Ding, B., et al. (2020). An atlas of dynamic chromatin landscapes in mouse fetal development. Nature 583, 744–751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, K., Ren, R., Cao, J., Zhao, S., and Yu, M. (2019a). Genome-wide identification of histone modifications involved in placental development in pigs. Front Genet 10, 277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, X., Xiong, Y., Zhao, C., Xie, S., Li, C., Li, X., Liu, X., Li, K., Zhao, S., and Ruan, J. (2019b). Identification of glyceraldehyde-3-phosphate dehydrogenase gene as an alternative safe harbor locus in pig genome. Genes 10, 660.

    Article  CAS  PubMed Central  Google Scholar 

  • Hasler-Rapacz, J., Ellegren, H., Fridolfsson, A.K., Kirkpatrick, B., Kirk, S., Andersson, L., and Rapacz, J. (1998). Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. Am J Med Genet 76, 379–386.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman, G.E., and Schadt, E.E. (2016). variancePartition: interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics 17, 483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu, Z.L., Park, C.A., Wu, X.L., and Reecy, J.M. (2013). Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res 41, D871–D879.

    Article  CAS  PubMed  Google Scholar 

  • Huang, D., Petrykowska, H.M., Miller, B.F., Elnitski, L., and Ovcharenko, I. (2019). Identification of human silencers by correlating cross-tissue epigenetic profiles and gene expression. Genome Res 29, 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakovcevski, I., Filipovic, R., Mo, Z., Rakic, S., and Zecevic, N. (2009). Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Javierre, B.M., Burren, O.S., Wilder, S.P., Kreuzhuber, R., Hill, S.M., Sewitz, S., Cairns, J., Wingett, S.W., Várnai, C., Thiecke, M.J., et al. (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A., and Mathelier, A. (2017). Intervene: a tool for intersection and visualization of multiple gene or genomic region sets. BMC Bioinformatics 18, 287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kirmse, K., Hübner, C.A., Isbrandt, D., Witte, O.W., and Holthoff, K. (2018). GABAergic transmission during brain development: multiple effects at multiple stages. Neuroscientist 24, 36–53.

    Article  CAS  PubMed  Google Scholar 

  • Kryuchkova-Mostacci, N., and Robinson-Rechavi, M. (2017). A benchmark of gene expression tissue-specificity metrics. Brief Bioinform 18, 205–214.

    CAS  PubMed  Google Scholar 

  • Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., et al. (2015). Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., Lowden, S., Finlayson, H., Brand, T., Willerslev, E., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618–1621.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Yang, Y., Bu, L., Guo, X., Tang, C., Song, J., Fan, N., Zhao, B., Ouyang, Z., Liu, Z., et al. (2014). Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing. Cell Res 24, 501–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    CAS  PubMed  Google Scholar 

  • Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M.F., Parker, B.J., Washietl, S., Kheradpour, P., Ernst, J., Jordan, G., Mauceli, E., et al. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, J., Yang, J., Zhou, L., Ren, J., Liu, X., Zhang, H., Yang, B., Zhang, Z., Ma, H., Xie, X., et al. (2014). A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genet 10, e1004710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marahrens, Y., Loring, J., and Jaenisch, R. (1998). Role of the Xist gene in X chromosome choosing. Cell 92, 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Marks, H., Chow, J.C., Denissov, S., Françoijs, K.J., Brockdorff, N., Heard, E., and Stunnenberg, H.G. (2009). High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res 19, 1361–1373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGregor, C.G.A., and Byrne, G.W. (2017). Porcine to human heart transplantation: is clinical application now appropriate? J Immunol Res 2017, 1–11.

    Article  CAS  Google Scholar 

  • Murtagh, F., and Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: which algorithms implement ward’s criterion? J Classif 31, 274–295.

    Article  Google Scholar 

  • Nasrallah, R., Imianowski, C.J., Bossini-Castillo, L., Grant, F.M., Dogan, M., Placek, L., Kozhaya, L., Kuo, P., Sadiyah, F., Whiteside, S.K., et al. (2020). A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature 583, 447–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neville, J.J., Orlando, J., Mann, K., McCloskey, B., and Antoniou, M.N. (2017). Ubiquitous Chromatin-opening Elements (UCOEs): applications in biomanufacturing and gene therapy. Biotechnol Adv 35, 557–564.

    Article  CAS  PubMed  Google Scholar 

  • Nord, A.S., Blow, M.J., Attanasio, C., Akiyama, J.A., Holt, A., Hosseini, R., Phouanenavong, S., Plajzer-Frick, I., Shoukry, M., Afzal, V., et al. (2013). Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang, B., and Snyder, M.P. (2020). Systematic identification of silencers in human cells. Nat Genet 52, 254–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papapetrou, E.P., and Schambach, A. (2016). Gene insertion into genomic safe harbors for human gene therapy. Mol Ther 24, 678–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poillet-Perez, L., Xie, X., Zhan, L., Yang, Y., Sharp, D.W., Hu, Z.S., Su, X., Maganti, A., Jiang, C., Lu, W., et al. (2018). Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu, D.M., Botting, R.A., Stephenson, E., Green, K., Webb, S., Jardine, L., Calderbank, E.F., Polanski, K., Goh, I., Efremova, M., et al. (2019). Decoding human fetal liver haematopoiesis. Nature 574, 365–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pott, S., and Lieb, J.D. (2015). What are super-enhancers? Nat Genet 47, 8–12.

    Article  CAS  PubMed  Google Scholar 

  • Quach, T.T., Massicotte, G., Belin, M.F., Honnorat, J., Glasper, E.R., Devries, A.C., Jakeman, L.B., Baudry, M., Duchemin, A.M., and Kolattukudy, P.E. (2007). CRMP3 is required for hippocampal CA1 dendritic organization and plasticity. FASEB J 22, 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16, 276–277.

    Article  CAS  PubMed  Google Scholar 

  • Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., Liu, Z., Mu, Y., Yang, S., Ouyang, H., et al. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5, 14253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schug, J., Schuller, W.P., Kappen, C., Salbaum, J.M., Bucan, M., and Stoeckert Jr, C.J. (2005). Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol 6, R33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengupta, S., and George, R.E. (2017). Super-enhancer-driven transcriptional dependencies in cancer. Trends Cancer 3, 269–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatoyannopoulos, J.A., Snyder, M., Hardison, R., Ren, B., Gingeras, T., Gilbert, D.M., Groudine, M., Bender, M., Kaul, R., Canfield, T., et al. (2012). An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13, 418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storey, J.D., Bass, A.J., Dabney, A., and Robinson, D. (2020). qvalue: Q-value estimation for false discovery rate control. R package version 2.22.0. Available from: URL: http://github.com/jdstorey/qvalue.

  • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., and Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci USA 108, 7902–7907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto, O., and Kitakaze, M. (2013). Biochemical and physiological regulation of cardiac myocyte contraction by cardiac-specific myosin light chain kinase. Circ J 77, 2218–2225.

    Article  CAS  PubMed  Google Scholar 

  • Tukiainen, T., Villani, A.C., Yen, A., Rivas, M.A., Marshall, J.L., Satija, R., Aguirre, M., Gauthier, L., Fleharty, M., Kirby, A., et al. (2017). Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaillancourt, K., Bedard, N., Bart, C., Tessier, M.., Robitaille, G., Turgeon, N., Frenette, M., Moineau, S., and Vadeboncoeur, C. (2008). Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Appl Environ Microbiol 74, 1264–1267.

    Article  CAS  PubMed  Google Scholar 

  • Van Laere, A.S., Nguyen, M., Braunschweig, M., Nezer, C., Collette, C., Moreau, L., Archibald, A.L., Haley, C.S., Buys, N., Tally, M., et al. (2003). A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832–836.

    Article  CAS  PubMed  Google Scholar 

  • Vigors, S., Sweeney, T., O’Shea, C.J., Kelly, A.K., and O’Doherty, J.V. (2016). Pigs that are divergent in feed efficiency, differ in intestinal enzyme and nutrient transporter gene expression, nutrient digestibility and microbial activity. Animal 10, 1848–1855.

    Article  CAS  PubMed  Google Scholar 

  • Villar, D., Berthelot, C., Aldridge, S., Rayner, T.F., Lukk, M., Pignatelli, M., Park, T.J., Deaville, R., Erichsen, J.T., Jasinska, A.J., et al. (2015). Enhancer evolution across 20 mammalian species. Cell 160, 554–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Zhu, F., Yang, H., Li, J., Li, Y., Ding, X., Xiong, X., Ji, F., Zhou, H., and Yin, Y. (2019). Epidermal growth factor improves intestinal morphology by stimulating proliferation and differentiation of enterocytes and mTOR signaling pathway in weaning piglets. Sci China Life Sci 63, 259–268.

    Article  CAS  Google Scholar 

  • Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee, T.I., and Young, R.A. (2013). Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y., Han, X., Zhang, J., Zhao, G., Wang, Z., Zhuang, R., Nie, X., Xie, S., Li, C., Li, X., et al. (2020). Identification of ACTB gene as a potential safe harbor locus in pig genome. Mol Biotechnol 62, 589–597.

    Article  CAS  PubMed  Google Scholar 

  • Younis, S., Schönke, M., Massart, J., Hjortebjerg, R., Sundström, E., Gustafson, U., Björnholm, M., Krook, A., Frystyk, J., Zierath, J.R., et al. (2018). The ZBED6-IGF2 axis has a major effect on growth of skeletal muscle and internal organs in placental mammals. Proc Natl Acad Sci USA 115, E2048–E2057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Zhang, Y., Gong, H., Cui, L., Huang, T., Ai, H., Ren, J., Huang, L., and Yang, B. (2017). Genetic mapping using 1.4M SNP array refined loci for fatty acid composition traits in Chinese Erhualian and Bamaxiang pigs. J Anim Breed Genet 134, 472–483.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Modelbased analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y., Sun, Y., Wu, Z., Xiong, X., Zhang, J., Ma, J., Xiao, S., Huang, L., and Yang, B. (2021). Subcutaneous and intramuscular fat transcriptomes show large differences in network organization and associations with adipose traits in pigs. Sci China Life Sci 64, 1732–1746.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, R., and Duncan, S.A. (2005). Embryonic development of the liver. Hepatology 41, 956–967.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Hou, Y., Xu, Y., Luan, Y., Zhou, H., Qi, X., Hu, M., Wang, D., Wang, Z., Fu, Y., et al. (2021). A compendium and comparative epigenomics analysis of cis-regulatory elements in the pig genome. Nat Commun 12, 2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Xiao, S., Guo, T., Rao, L., Li, L., Zhang, Z., and Huang, L. (2020). DNA methylomic homogeneity and heterogeneity in muscles and testes throughout Pig Adulthood. Aging 12, 25412–25431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong, X., Xiao, X., Jie, F., Cheng, Y., Jin, M., Yin, Y., and Wang, Y. (2021). YTHDF1 promotes NLRP3 translation to induce intestinal epithelial cell inflammatory injury during endotoxic shock. Sci China Life Sci 64, 1988–1991.

    Article  CAS  PubMed  Google Scholar 

  • Żylicz, J.J., Bousard, A., Žumer, K., Dossin, F., Mohammad, E., da Rocha, S.T., Schwalb, B., Syx, L., Dingli, F., Loew, D., et al. (2019). The implication of early chromatin changes in X chromosome inactivation. Cell 176, 182–197.e23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31790413 and 31760657). We are grateful to colleagues in State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University for sample collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yang or Lusheng Huang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Zhou, Z., Huang, T. et al. Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. Sci. China Life Sci. 65, 1517–1534 (2022). https://doi.org/10.1007/s11427-021-2034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2034-5

Keywords

Navigation