Skip to main content

Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold

Abstract

Spinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients’ own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients. Fifteen patients with acute complete SCI and 51 patients with chronic complete SCI were enrolled and followed up for 2 to 5 years. No serious adverse events related to functional scaffold transplantation were observed. Among the patients with acute SCI, five patients achieved expansion of their sensory positions and six patients recovered sensation in the bowel or bladder. Additionally, four patients regained voluntary walking ability accompanied by reconnection of neural signal transduction. Among patients with chronic SCI, 16 patients achieved expansion of their sensation level and 30 patients experienced enhanced reflexive defecation sensation or increased skin sweating below the injury site. Nearly half of the patients with chronic cervical SCI developed enhanced finger activity. These long-term follow-up results suggest that functional scaffold transplantation may represent a feasible treatment for patients with complete SCI.

This is a preview of subscription content, access via your institution.

References

  1. Adams, M.M., and Hicks, A.L. (2005). Spasticity after spinal cord injury. Spinal Cord 43, 577–586.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Assinck, P., Duncan, G.J., Hilton, B.J., Plemel, J.R., and Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nat Neurosci 20, 637–647.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Bartlett, R.D., Burley, S., Ip, M., Phillips, J.B., and Choi, D. (2020). Cell therapies for spinal cord injury: trends and challenges of current clinical trials. Neurosurgery 87, E456–E472.

    PubMed  Article  PubMed Central  Google Scholar 

  4. Cyranoski, D. (2019). Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565, 544–545.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Ditunno, J.F., Little, J.W., Tessler, A., and Burns, A.S. (2004). Spinal shock revisited: a four-phase model. Spinal Cord 42, 383–395.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. Fan, C., Li, X., Xiao, Z., Zhao, Y., Liang, H., Wang, B., Han, S., Li, X., Xu, B., Wang, N., et al. (2017). A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51, 304–316.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Fan, C., Li, X., Zhao, Y., Xiao, Z., Xue, W., Sun, J., Li, X., Zhuang, Y., Chen, Y., and Dai, J. (2018). Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci 6, 1723–1734.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Fitch, M.T., and Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209, 294–301.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117, 2224–2241.

    PubMed  PubMed Central  Article  Google Scholar 

  10. Führmann, T., Anandakumaran, P.N., and Shoichet, M.S. (2017). Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv Healthcare Mater 6, 1601130.

    Article  CAS  Google Scholar 

  11. Gwak, Y.S., Hains, B.C., Johnson, K.M., and Hulsebosch, C.E. (2004). Effect of age at time of spinal cord injury on behavioral outcomes in rat. J Neurotrauma 21, 983–993.

    PubMed  Article  Google Scholar 

  12. Haas, U., and Geng, V. (2008). Sensation of defecation in patients with spinal cord injury. Spinal Cord 46, 107–112.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Han, Q., Jin, W., Xiao, Z., Ni, H., Wang, J., Kong, J., Wu, J., Liang, W., Chen, L., Zhao, Y., et al. (2010). The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31, 9212–9220.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Han, S., Li, X., Xiao, Z., and Dai, J. (2018a). Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Sci China Life Sci 61, 115–117.

    PubMed  Article  PubMed Central  Google Scholar 

  15. Han, S., Wang, B., Jin, W., Xiao, Z., Li, X., Ding, W., Kapur, M., Chen, B., Yuan, B., Zhu, T., et al. (2015). The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 41, 89–96.

    CAS  PubMed  Article  Google Scholar 

  16. Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018b). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.

    CAS  PubMed  Article  Google Scholar 

  17. Han, S., Yin, W., Li, X., Wu, S., Cao, Y., Tan, J., Zhao, Y., Hou, X., Wang, L., Ren, C., et al. (2019). Pre-clinical evaluation of CBD-NT3 modified collagen scaffolds in completely spinal cord transected non-human primates. J Neurotrauma 36, 2316–2324.

    PubMed  Article  Google Scholar 

  18. Hatch, M.N., Cushing, T.R., Carlson, G.D., and Chang, E.Y. (2018). Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci 384, 75–83.

    PubMed  Article  Google Scholar 

  19. Illis, L.S. (2012). Central nervous system regeneration does not occur. Spinal Cord 50, 259–263.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Jung, D.I., Ha, J., Kang, B.T., Kim, J.W., Quan, F.S., Lee, J.H., Woo, E.J., and Park, H.M. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285, 67–77.

    PubMed  Article  PubMed Central  Google Scholar 

  21. Kawano, O., Maeda, T., Mori, E., Takao, T., Sakai, H., Masuda, M., Morishita, Y., Hayashi, T., Kubota, K., Kobayakawa, K., et al. (2020). How much time is necessary to confirm the diagnosis of permanent complete cervical spinal cord injury? Spinal Cord 58, 284–289.

    PubMed  Article  PubMed Central  Google Scholar 

  22. Kirshblum, S.C., Burns, S.P., Biering-Sorensen, F., Donovan, W., Graves, D.E., Jha, A., Johansen, M., Jones, L., Krassioukov, A., Mulcahey, M.J., et al. (2011). International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34, 535–546.

    PubMed  PubMed Central  Article  Google Scholar 

  23. Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019). Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197, 20–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. Li, X., Tan, J., Xiao, Z., Zhao, Y., Han, S., Liu, D., Yin, W., Li, J., Li, J., Wanggou, S., et al. (2017a). Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7, 43559.

    PubMed  PubMed Central  Article  Google Scholar 

  25. Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., et al. (2017b). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137, 73–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Lin, H., Chen, B., Wang, B., Zhao, Y., Sun, W., and Dai, J. (2006). Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res B Appl Biomater 79A, 591–598.

    CAS  Article  Google Scholar 

  27. Liu, D., Li, X., Xiao, Z., Yin, W., Zhao, Y., Tan, J., Chen, B., Jiang, X., and Dai, J. (2019). Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214, 119230.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Mothe, A.J., and Tator, C.H. (2012). Advances in stem cell therapy for spinal cord injury. J Clin Invest 122, 3824–3834.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Raineteau, O., and Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2, 263–273.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Rosenzweig, E.S., Courtine, G., Jindrich, D.L., Brock, J.H., Ferguson, A. R., Strand, S.C., Nout, Y.S., Roy, R.R., Miller, D.M., Beattie, M.S., et al. (2010). Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13, 1505–1510.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Rupp, R. (2020). Spinal cord lesions. Handb Clin Neurol 168, 51–65.

    PubMed  Article  PubMed Central  Google Scholar 

  32. Samdani, A.F., Paul, C., Betz, R.R., Fischer, I., and Neuhuber, B. (2009). Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord. Spine 34, 2605–2612.

    PubMed  Article  Google Scholar 

  33. Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., and Molinari, M. (2014a). Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8, 141.

    PubMed  PubMed Central  Article  Google Scholar 

  34. Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., Molinari, M., and Ditunno, J.F. (2014b). Walking index for spinal cord injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord 52, 65–69.

    CAS  PubMed  Article  Google Scholar 

  35. Siegenthaler, M.M., Ammon, D.L., and Keirstead, H.S. (2008). Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 213, 363–371.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Slotkin, J.R., Pritchard, C.D., Luque, B., Ye, J., Layer, R.T., Lawrence, M. S., O’Shea, T.M., Roy, R.R., Zhong, H., Vollenweider, I., et al. (2017). Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123, 63–76.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Teng, Y.D., Lavik, E.B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E.Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99, 3024–3029.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T.R., and Ropper, A.E. (2016). First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury. Neurosurgery 79, E305–E312.

    PubMed  Article  Google Scholar 

  39. von Leden, R.E., Khayrullina, G., Moritz, K.E., and Byrnes, K.R. (2017). Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflamm 14, 161.

    Article  CAS  Google Scholar 

  40. Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., and Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12.

  41. Willison, A.G., Smith, S., Davies, B.M., Kotter, M.R.N., and Barnett, S.C. (2020). A scoping review of trials for cell-based therapies in human spinal cord injury. Spinal Cord 58, 844–856.

    PubMed  Article  PubMed Central  Google Scholar 

  42. Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016). One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59, 647–655.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Xiao, Z., Tang, F., Zhao, Y., Han, G., Yin, N., Li, X., Chen, B., Han, S., Jiang, X., Yun, C., et al. (2018). Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant 27, 907–915.

    PubMed  PubMed Central  Article  Google Scholar 

  44. Xu, B., Zhao, Y., Xiao, Z., Wang, B., Liang, H., Li, X., Fang, Y., Han, S., Li, X., Fan, C., et al. (2017). A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthcare Mater 6, 1601279.

    Article  CAS  Google Scholar 

  45. Xue, X., Shu, M., Xiao, Z., Zhao, Y., Li, X., Zhang, H., Fan, Y., Wu, X., Chen, B., Xu, B., et al. (2021). Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci., doi: https://doi.org/10.1007/s11427-020-1901-4.

  46. Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Zhao, Y., Tang, F., Xiao, Z., Han, G., Wang, N., Yin, N., Chen, B., Jiang, X., Yun, C., Han, W., et al. (2017a). Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26, 891–900.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Zhao, Y., Xiao, Z., Chen, B., and Dai, J. (2017b). The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13, 63–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81891000) and the National Key Research and Development Program of China (2016YFC1101504 and 2016YFC1101505).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shuxun Hou, Sai Zhang or Jianwu Dai.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, F., Tang, J., Zhao, Y. et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold. Sci. China Life Sci. (2021). https://doi.org/10.1007/s11427-021-1985-5

Download citation

  • complete spinal cord injury
  • collagen scaffold
  • function recovery
  • clinical study