Adams, M.M., and Hicks, A.L. (2005). Spasticity after spinal cord injury. Spinal Cord 43, 577–586.
CAS
PubMed
Article
Google Scholar
Assinck, P., Duncan, G.J., Hilton, B.J., Plemel, J.R., and Tetzlaff, W. (2017). Cell transplantation therapy for spinal cord injury. Nat Neurosci 20, 637–647.
CAS
PubMed
Article
Google Scholar
Bartlett, R.D., Burley, S., Ip, M., Phillips, J.B., and Choi, D. (2020). Cell therapies for spinal cord injury: trends and challenges of current clinical trials. Neurosurgery 87, E456–E472.
PubMed
Article
Google Scholar
Cyranoski, D. (2019). Japan’s approval of stem-cell treatment for spinal-cord injury concerns scientists. Nature 565, 544–545.
CAS
PubMed
Article
Google Scholar
Ditunno, J.F., Little, J.W., Tessler, A., and Burns, A.S. (2004). Spinal shock revisited: a four-phase model. Spinal Cord 42, 383–395.
CAS
PubMed
Article
Google Scholar
Fan, C., Li, X., Xiao, Z., Zhao, Y., Liang, H., Wang, B., Han, S., Li, X., Xu, B., Wang, N., et al. (2017). A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater 51, 304–316.
CAS
PubMed
Article
Google Scholar
Fan, C., Li, X., Zhao, Y., Xiao, Z., Xue, W., Sun, J., Li, X., Zhuang, Y., Chen, Y., and Dai, J. (2018). Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater Sci 6, 1723–1734.
CAS
PubMed
Article
Google Scholar
Fitch, M.T., and Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp Neurol 209, 294–301.
CAS
PubMed
Article
Google Scholar
Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 117, 2224–2241.
PubMed
PubMed Central
Article
Google Scholar
Führmann, T., Anandakumaran, P.N., and Shoichet, M.S. (2017). Combinatorial therapies after spinal cord injury: how can biomaterials help? Adv Healthcare Mater 6, 1601130.
Article
CAS
Google Scholar
Gwak, Y.S., Hains, B.C., Johnson, K.M., and Hulsebosch, C.E. (2004). Effect of age at time of spinal cord injury on behavioral outcomes in rat. J Neurotrauma 21, 983–993.
PubMed
Article
Google Scholar
Haas, U., and Geng, V. (2008). Sensation of defecation in patients with spinal cord injury. Spinal Cord 46, 107–112.
CAS
PubMed
Article
Google Scholar
Han, Q., Jin, W., Xiao, Z., Ni, H., Wang, J., Kong, J., Wu, J., Liang, W., Chen, L., Zhao, Y., et al. (2010). The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 31, 9212–9220.
CAS
PubMed
Article
Google Scholar
Han, S., Li, X., Xiao, Z., and Dai, J. (2018a). Complete canine spinal cord transection model: a large animal model for the translational research of spinal cord regeneration. Sci China Life Sci 61, 115–117.
PubMed
Article
Google Scholar
Han, S., Wang, B., Jin, W., Xiao, Z., Li, X., Ding, W., Kapur, M., Chen, B., Yuan, B., Zhu, T., et al. (2015). The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 41, 89–96.
CAS
PubMed
Article
Google Scholar
Han, S., Xiao, Z., Li, X., Zhao, H., Wang, B., Qiu, Z., Li, Z., Mei, X., Xu, B., Fan, C., et al. (2018b). Human placenta-derived mesenchymal stem cells loaded on linear ordered collagen scaffold improves functional recovery after completely transected spinal cord injury in canine. Sci China Life Sci 61, 2–13.
CAS
PubMed
Article
Google Scholar
Han, S., Yin, W., Li, X., Wu, S., Cao, Y., Tan, J., Zhao, Y., Hou, X., Wang, L., Ren, C., et al. (2019). Pre-clinical evaluation of CBD-NT3 modified collagen scaffolds in completely spinal cord transected non-human primates. J Neurotrauma 36, 2316–2324.
PubMed
Article
Google Scholar
Hatch, M.N., Cushing, T.R., Carlson, G.D., and Chang, E.Y. (2018). Neuropathic pain and SCI: Identification and treatment strategies in the 21st century. J Neurol Sci 384, 75–83.
PubMed
Article
Google Scholar
Illis, L.S. (2012). Central nervous system regeneration does not occur. Spinal Cord 50, 259–263.
CAS
PubMed
Article
Google Scholar
Jung, D.I., Ha, J., Kang, B.T., Kim, J.W., Quan, F.S., Lee, J.H., Woo, E.J., and Park, H.M. (2009). A comparison of autologous and allogenic bone marrow-derived mesenchymal stem cell transplantation in canine spinal cord injury. J Neurol Sci 285, 67–77.
PubMed
Article
Google Scholar
Kawano, O., Maeda, T., Mori, E., Takao, T., Sakai, H., Masuda, M., Morishita, Y., Hayashi, T., Kubota, K., Kobayakawa, K., et al. (2020). How much time is necessary to confirm the diagnosis of permanent complete cervical spinal cord injury? Spinal Cord 58, 284–289.
PubMed
Article
Google Scholar
Kirshblum, S.C., Burns, S.P., Biering-Sorensen, F., Donovan, W., Graves, D.E., Jha, A., Johansen, M., Jones, L., Krassioukov, A., Mulcahey, M.J., et al. (2011). International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34, 535–546.
PubMed
PubMed Central
Article
Google Scholar
Li, X., Liu, D., Xiao, Z., Zhao, Y., Han, S., Chen, B., and Dai, J. (2019). Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 197, 20–31.
CAS
PubMed
Article
Google Scholar
Li, X., Tan, J., Xiao, Z., Zhao, Y., Han, S., Liu, D., Yin, W., Li, J., Li, J., Wanggou, S., et al. (2017a). Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury. Sci Rep 7, 43559.
PubMed
PubMed Central
Article
Google Scholar
Li, X., Zhao, Y., Cheng, S., Han, S., Shu, M., Chen, B., Chen, X., Tang, F., Wang, N., Tu, Y., et al. (2017b). Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials 137, 73–86.
CAS
PubMed
Article
Google Scholar
Lin, H., Chen, B., Wang, B., Zhao, Y., Sun, W., and Dai, J. (2006). Novel nerve guidance material prepared from bovine aponeurosis. J Biomed Mater Res B Appl Biomater 79A, 591–598.
CAS
Article
Google Scholar
Liu, D., Li, X., Xiao, Z., Yin, W., Zhao, Y., Tan, J., Chen, B., Jiang, X., and Dai, J. (2019). Different functional bio-scaffolds share similar neurological mechanism to promote locomotor recovery of canines with complete spinal cord injury. Biomaterials 214, 119230.
CAS
PubMed
Article
Google Scholar
Mothe, A.J., and Tator, C.H. (2012). Advances in stem cell therapy for spinal cord injury. J Clin Invest 122, 3824–3834.
CAS
PubMed
PubMed Central
Article
Google Scholar
Raineteau, O., and Schwab, M.E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2, 263–273.
CAS
PubMed
Article
Google Scholar
Rosenzweig, E.S., Courtine, G., Jindrich, D.L., Brock, J.H., Ferguson, A. R., Strand, S.C., Nout, Y.S., Roy, R.R., Miller, D.M., Beattie, M.S., et al. (2010). Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 13, 1505–1510.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rupp, R. (2020). Spinal cord lesions. Handb Clin Neurol 168, 51–65.
PubMed
Article
Google Scholar
Samdani, A.F., Paul, C., Betz, R.R., Fischer, I., and Neuhuber, B. (2009). Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord. Spine 34, 2605–2612.
PubMed
Article
Google Scholar
Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., and Molinari, M. (2014a). Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury. Front Hum Neurosci 8, 141.
PubMed
PubMed Central
Article
Google Scholar
Scivoletto, G., Tamburella, F., Laurenza, L., Torre, M., Molinari, M., and Ditunno, J.F. (2014b). Walking index for spinal cord injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord 52, 65–69.
CAS
PubMed
Article
Google Scholar
Siegenthaler, M.M., Ammon, D.L., and Keirstead, H.S. (2008). Myelin pathogenesis and functional deficits following SCI are age-associated. Exp Neurol 213, 363–371.
CAS
PubMed
PubMed Central
Article
Google Scholar
Slotkin, J.R., Pritchard, C.D., Luque, B., Ye, J., Layer, R.T., Lawrence, M. S., O’Shea, T.M., Roy, R.R., Zhong, H., Vollenweider, I., et al. (2017). Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123, 63–76.
CAS
PubMed
Article
Google Scholar
Teng, Y.D., Lavik, E.B., Qu, X., Park, K.I., Ourednik, J., Zurakowski, D., Langer, R., and Snyder, E.Y. (2002). Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99, 3024–3029.
CAS
PubMed
PubMed Central
Article
Google Scholar
Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T.R., and Ropper, A.E. (2016). First human implantation of a bioresorbable polymer scaffold for acute traumatic spinal cord injury. Neurosurgery 79, E305–E312.
PubMed
Article
Google Scholar
von Leden, R.E., Khayrullina, G., Moritz, K.E., and Byrnes, K.R. (2017). Age exacerbates microglial activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflamm 14, 161.
Article
CAS
Google Scholar
Wang, N., Xiao, Z., Zhao, Y., Wang, B., Li, X., Li, J., and Dai, J. (2018). Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J Tissue Eng Regen Med 12.
Willison, A.G., Smith, S., Davies, B.M., Kotter, M.R.N., and Barnett, S.C. (2020). A scoping review of trials for cell-based therapies in human spinal cord injury. Spinal Cord 58, 844–856.
PubMed
Article
Google Scholar
Xiao, Z., Tang, F., Tang, J., Yang, H., Zhao, Y., Chen, B., Han, S., Wang, N., Li, X., Cheng, S., et al. (2016). One-year clinical study of NeuroRegen scaffold implantation following scar resection in complete chronic spinal cord injury patients. Sci China Life Sci 59, 647–655.
CAS
PubMed
Article
Google Scholar
Xiao, Z., Tang, F., Zhao, Y., Han, G., Yin, N., Li, X., Chen, B., Han, S., Jiang, X., Yun, C., et al. (2018). Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells. Cell Transplant 27, 907–915.
PubMed
PubMed Central
Article
Google Scholar
Xu, B., Zhao, Y., Xiao, Z., Wang, B., Liang, H., Li, X., Fang, Y., Han, S., Li, X., Fan, C., et al. (2017). A dual functional scaffold tethered with EGFR antibody promotes neural stem cell retention and neuronal differentiation for spinal cord injury repair. Adv Healthcare Mater 6, 1601279.
Article
CAS
Google Scholar
Xue, X., Shu, M., Xiao, Z., Zhao, Y., Li, X., Zhang, H., Fan, Y., Wu, X., Chen, B., Xu, B., et al. (2021). Lineage tracing reveals the origin of Nestin-positive cells are heterogeneous and rarely from ependymal cells after spinal cord injury. Sci China Life Sci., doi: https://doi.org/10.1007/s11427-020-1901-4.
Yiu, G., and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7, 617–627.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhao, Y., Tang, F., Xiao, Z., Han, G., Wang, N., Yin, N., Chen, B., Jiang, X., Yun, C., Han, W., et al. (2017a). Clinical study of NeuroRegen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury. Cell Transplant 26, 891–900.
PubMed
PubMed Central
Article
Google Scholar
Zhao, Y., Xiao, Z., Chen, B., and Dai, J. (2017b). The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 13, 63–70.
CAS
PubMed
PubMed Central
Article
Google Scholar