Skip to main content
Log in

Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The hypothesis that eukaryotes originated from within the domain Archaea has been strongly supported by recent phylogenomic analyses placing Heimdallarchaeota-Wukongarchaeota branch from the Asgard superphylum as the closest known archaeal sister-group to eukaryotes. However, our understanding is still limited in terms of the relationship between eukaryotes and archaea, as well as the evolution and ecological functions of the Asgard archaea. Here, we describe three previously unknown phylum-level Asgard archaeal lineages, tentatively named Sigyn-, Freyr- and Njordarchaeota. Additional members in Wukongarchaeota and Baldrarchaeota from distinct environments are also reported here, further expanding their ecological roles and metabolic capacities. Comprehensive phylogenomic analyses further supported the origin of eukaryotes within Asgard archaea and a new lineage Njordarchaeota was supposed as the known closest branch with the eukaryotic nuclear host lineage. Metabolic reconstruction suggests that Njordarchaeota may have a heterotrophic lifestyle with capability of peptides and amino acids utilization, while Sigynarchaeota and Freyrarchaeota also have the potentials to fix inorganic carbon via the Wood-Ljungdahl pathway and degrade organic matters. Additionally, the Ack/Pta pathway for homoacetogenesis and de novo anaerobic cobalamin biosynthesis pathway were found in Freyrarchaeota and Wukongrarchaeota, respectively. Some previously unidentified eukaryotic signature proteins for intracellular membrane trafficking system, and the homologue of mu/sigma subunit of adaptor protein complex, were identified in Freyrarchaeota. This study expands the Asgard superphylum, sheds new light on the evolution of eukaryotes and improves our understanding of ecological functions of the Asgard archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akıl, C., Tran, L.T., Orhant-Prioux, M., Baskaran, Y., Manser, E., Blanchoin, L., and Robinson, R.C. (2020). Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc Natl Acad Sci USA 117, 19904–19913.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alneberg, J., Bjarnason, B.S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N.J., Andersson, A.F., and Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nat Methods 11, 1144–1146.

    Article  CAS  PubMed  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein alignment using DIAMOND. Nat Methods 12, 59–60.

    Article  CAS  PubMed  Google Scholar 

  • Bulzu, P.A., Andrei, A.Ş., Salcher, M.M., Mehrshad, M., Inoue, K., Kandori, H., Beja, O., Ghai, R., and Banciu, H.L. (2019). Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat Microbiol 4, 1129–1137.

    Article  CAS  PubMed  Google Scholar 

  • Cai, M., Liu, Y., Yin, X., Zhou, Z., Friedrich, M.W., Richter-Heitmann, T., Nimzyk, R., Kulkarni, A., Wang, X., Li, W., et al. (2020). Diverse Asgard archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. Sci China Life Sci 63, 886–897.

    Article  CAS  PubMed  Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J.M., and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2019). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927.

    PubMed Central  Google Scholar 

  • Dombrowski, N., Teske, A.P., and Baker, B.J. (2018). Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun 9, 1–3.

    Article  CAS  Google Scholar 

  • Doxey, A.C., Kurtz, D.A., Lynch, M.D.J., Sauder, L.A., and Neufeld, J.D. (2015). Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J 9, 461–471.

    Article  CAS  PubMed  Google Scholar 

  • Embley, T.M., and Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature 440, 623–630.

    Article  CAS  PubMed  Google Scholar 

  • Esser, C., Ahmadinejad, N., Wiegand, C., Rotte, C., Sebastiani, F., Gelius-Dietrich, G., Henze, K., Kretschmann, E., Richly, E., Leister, D., et al. (2004). A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21, 1643–1660.

    Article  CAS  PubMed  Google Scholar 

  • Fang, H., Li, D., Kang, J., Jiang, P., Sun, J., and Zhang, D. (2018). Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun 9, 4917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feng, X., Wang, Y., Zubin, R., and Wang, F. (2019). Core metabolic features and hot origin of Bathyarchaeota. Engineering 5, 498–504.

    Article  CAS  Google Scholar 

  • Field, M.C., and Dacks, J.B. (2009). First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21, 4–13.

    Article  CAS  PubMed  Google Scholar 

  • Fournier, G.P., and Gogarten, J.P. (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190, 1124–1127.

    Article  CAS  PubMed  Google Scholar 

  • Hartman, H., and Fedorov, A. (2002). The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99, 1420–1425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Y., Li, M., Perumal, V., Feng, X., Fang, J., Xie, J., Sievert, S.M., and Wang, F. (2016). Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1, 16035.

    Article  CAS  PubMed  Google Scholar 

  • Hirst, J., Barlow, L.D., Francisco, G.C., Sahlender, D.A., Seaman, M.N.J., Dacks, J.B., and Robinson, M.S. (2011). The fifth adaptor protein complex. PLoS Biol 9, e1001170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., and Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res 35, W585–W587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314.

    Article  CAS  PubMed  Google Scholar 

  • Hyatt, D., Chen, G.L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11, 119.

    Article  CAS  Google Scholar 

  • Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., et al. (2020). Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jay, Z.J., Beam, J.P., Dlakić, M., Rusch, D.B., Kozubal, M.A., and Inskeep, W.P. (2018). Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. Nat Microbiol 3, 732–740.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P., Binns, D., Chang, H.Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., and Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake, J.A., Henderson, E., Oakes, M., and Clark, M.W. (1984). Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81, 3786–3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazar, C.S., Baker, B.J., Seitz, K., Hyde, A.S., Dick, G.J., Hinrichs, K.U., and Teske, A.P. (2016). Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environ Microbiol 18, 1200–1211.

    Article  CAS  PubMed  Google Scholar 

  • Le, S.Q., and Gascuel, O. (2008). An improved general amino acid replacement matrix. Mol Biol Evol 25, 1307–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lee, I., Ouk Kim, Y., Park, S.C., and Chun, J. (2016). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Leung, K.F., Dacks, J.B., and Field, M.C. (2008). Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698–1716.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Makarova, K.S., Huang, W.C., Wolf, Y.I., Nikolskaya, A.N., Zhang, X., Cai, M., Zhang, C.J., Xu, W., Luo, Z., et al. (2021). Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhou, Z., Pan, J., Baker, B.J., Gu, J.D., and Li, M. (2018). Comparative genomic inference suggests mixotrophic lifestyle for Thorarchaeota. ISME J 12, 1021–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-García, P., and Moreira, D. (2006). Selective forces for the origin of the eukaryotic nucleus. Bioessays 28, 525–533.

    Article  PubMed  CAS  Google Scholar 

  • López-García, P., and Moreira, D. (2015). Open questions on the origin of eukaryotes. Trends Ecol Evol 30, 697–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • López-García, P., and Moreira, D. (1999). Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24, 88–93.

    Article  PubMed  Google Scholar 

  • Luo, C., Rodriguez-R L.M., and Konstantinidis, K.T. (2014). MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 42, e73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod, F. S. Kindler, G., Lun Wong, H., Chen, R., and P. Burns, B. (2019). Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 5, 48–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova, K.S., Wolf, Y.I., and Koonin, E.V. (2015). Archaeal clusters of orthologous genes (arCOGs): an update and application for analysis of shared features between Thermococcales, Methanococcales, and Methanobacteriales. Life 5, 818–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, W.F., Garg, S., and Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B 370, 20140330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira, D., and López-García, P. (1998). Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 47, 517–530.

    Article  CAS  PubMed  Google Scholar 

  • Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35, W182–W185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narrowe, A.B., Spang, A., Stairs, C.W., Caceres, E.F., Baker, B.J., Miller, C.S., and Ettema, T.J.G. (2018). Complex evolutionary history of translation Elongation Factor 2 and diphthamide biosynthesis in Archaea and parabasalids. Genome Biol Evol 10, 2380–2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. (2015). IQTREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Pan, J., Zhou, Z., Béjà, O., Cai, M., Yang, Y., Liu, Y., Gu, J.D., and Li, M. (2020). Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota. Microbiome 8, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S.Y., and Guo, X. (2014). Adaptor protein complexes and intracellular transport. Biosci Rep 34, e00123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiborg, C., and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452.

    Article  CAS  PubMed  Google Scholar 

  • Rawlings, N.D., Barrett, A.J., and Finn, R. (2016). Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 44, D343–D350.

    Article  CAS  PubMed  Google Scholar 

  • Richter, K., Haslbeck, M., and Buchner, J. (2010). The heat shock response: life on the verge of death. Mol Cell 40, 253–266.

    Article  CAS  PubMed  Google Scholar 

  • Rochette, N.C., Brochier-Armanet, C., and Gouy, M. (2014). Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 31, 832–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rother, M., and Metcalf, W.W. (2004). Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc Natl Acad Sci USA 101, 16929–16934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz, B.L., Stirnimann, C.U., Grimshaw, J.P.A., Brozzo, M.S., Fritsch, F., Mohorko, E., Capitani, G., Glockshuber, R., Grütter, M.G., and Aebi, M. (2009). Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc Natl Acad Sci USA 106, 11061–11066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seitz, K.W., Dombrowski, N., Eme, L., Spang, A., Lombard, J., Sieber, J. R., Teske, A.P., Ettema, T.J.G., and Baker, B.J. (2019). Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 10, 1822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seitz, K.W., Lazar, C.S., Hinrichs, K.U., Teske, A.P., and Baker, B.J. (2016). Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J 10, 1696–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Søndergaard, D., Pedersen, C.N.S., and Greening, C. (2016). HydDB: a web tool for hydrogenase classification and analysis. Sci Rep 6, 34212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spang, A., Saw, J.H., Jørgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., van Eijk, R., Schleper, C., Guy, L., and Ettema, T.J.G. (2015). Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spang, A., Stairs, C.W., Dombrowski, N., Eme, L., Lombard, J., Caceres, E.F., Greening, C., Baker, B.J., and Ettema, T.J.G. (2019). Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 4, 1138–1148.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J.Z.A., and Gleeson, P.A. (2019). Cargo sorting at the trans-Golgi network for shunting into specific transport routes: role of Arf small G proteins and adaptor complexes. Cells 8, 531.

    Article  CAS  PubMed Central  Google Scholar 

  • Wang, Y., Wegener, G., Hou, J., Wang, F., and Xiao, X. (2019). Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol 4, 595–602.

    Article  CAS  PubMed  Google Scholar 

  • Williams, T.A., Cox, C.J., Foster, P.G., Szöllősi, G.J., and Embley, T.M. (2020). Phylogenomics provides robust support for a two-domains tree of life. Nat Ecol Evol 4, 138–147.

    Article  PubMed  Google Scholar 

  • Williams, T.A., Foster, P.G., Cox, C.J., and Embley, T.M. (2013). An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236.

    Article  CAS  PubMed  Google Scholar 

  • Woese, C.R., Kandler, O., and Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576–4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong, H.L., White Iii, R.A., Visscher, P.T., Charlesworth, J.C., Vázquez-Campos, X., and Burns, B.P. (2018). Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J 12, 2619–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y.W., Simmons, B.A., and Singer, S.W. (2016). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607.

    Article  CAS  PubMed  Google Scholar 

  • Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., et al. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P.K., Xu, Y., and Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 46, W95–W101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J.W., Dong, H.P., Hou, L.J., Liu, Y., Ou, Y.F., Zheng, Y.L., Han, P., Liang, X., Yin, G.Y., Wu, D.M., et al. (2021). Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME J 15, 1826–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R.Y., Zou, B., Yan, Y.W., Jeon, C.O., Li, M., Cai, M., and Quan, Z. X. (2020). Design of targeted primers based on 16S rRNA sequences in meta-transcriptomic datasets and identification of a novel taxonomic group in the Asgard archaea. BMC Microbiol 20, 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmermann, L., Stephens, A., Nam, S.Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A.N., and Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 430, 2237–2243.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91751205, 41921006, 41902313, 92051116), the China Ocean Mineral Resources R&D Association (COMRA) project (DY135-B2-12), the National Key Research and Development Project of China (2018YFC0310803), and the Senior User Project of RV KEXUE (KEXUE2019GZ06). We are grateful for Dr. Tom A. William for his suggestions regarding phylogenetic analysis. We thank Dr. Brett Baker for allowing us use their metagenomic data freely and these metagenomic data were produced by the US Department of Energy Joint Genome Institute http://www.jgi.doe.gov/ in collaboration with the user community. Thank Wan Liu for the genome submission to eLMSG (https://www.biosino.org/elmsg/index).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengping Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, R., Wang, Y., Huang, D. et al. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 65, 818–829 (2022). https://doi.org/10.1007/s11427-021-1969-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1969-6

Navigation