Skip to main content
Log in

A widespread response of Gram-negative bacterial acyl-homoserine lactone receptors to Gram-positive Streptomyces γ-butyrolactone signaling molecules

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cell-cell communication is critical for bacterial survival in natural habitats, in which miscellaneous regulatory networks are encompassed. However, elucidating the interaction networks of a microbial community has been hindered by the population complexity. This study reveals that γ-butyrolactone (GBL) molecules from Streptomyces species, the major antibiotic producers, can directly bind to the acyl-homoserine lactone (AHL) receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing (QS) system. Subsequently, the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled. Based on the cross-talk between GBL and AHL signaling systems, combinatorial regulatory circuits (CRC) are designed and proved to be workable in Escherichia coli (E. coli). It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules. These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, C., Bertani, I., and Venturi, V. (2003). Quorum-sensing system and stationary-phase sigma factor (rpoS) of the onion pathogen Burkholderia cepacia genomovar I type strain, ATCC 25416. Appl Environ Microbiol 69, 1739–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alagely, A., Krediet, C.J., Ritchie, K.B., and Teplitski, M. (2011). Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J 5, 1609–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassler, B.L. (2002). Small talk: cell-to-cell communication in bacteria. Cell 109, 421–424.

    Article  CAS  PubMed  Google Scholar 

  • Bassler, B.L., and Losick, R. (2006). Bacterially speaking. Cell 125, 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Biarnes-Carrera, M., Lee, C.K., Nihira, T., Breitling, R., and Takano, E. (2018). Orthogonal regulatory circuits for Escherichia coli based on the γ-butyrolactone system of Streptomyces coelicolor. ACS Synth Biol 7, 1043–1055.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, J.R., Heilmann, S., Mittler, J.E., and Greenberg, E.P. (2012). Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model. ISME J 6, 2219–2228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Swem, L.R., Swem, D.L., Stauff, D.L., O’Loughlin, C.T., Jeffrey, P.D., Bassler, B.L., and Hughson, F.M. (2011). A strategy for antagonizing quorum sensing. Mol Cell 42, 199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrette, M.G., Carlson, C.M., Ortega, H.E., Thomas, C., Ananiev, G.E., Barns, K.J., Book, A.J., Cagnazzo, J., Carlos, C., Flanigan, W., et al. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nat Commun 10, 516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu, Y.Y., Nega, M., Wölfle, M., Plener, L., Grond, S., Jung, K., and Götz, F. (2013). A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gramnegative bacteria. PLoS Pathog 9, e1003654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Wu, J., Tao, F., and Zhang, L.H. (2011). Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chem Rev 111, 160–173.

    Article  CAS  PubMed  Google Scholar 

  • Devescovi, G., Kojic, M., Covaceuszach, S., Cámara, M., Williams, P., Bertani, I., Subramoni, S., and Venturi, V. (2017). Negative regulation of violacein biosynthesis in Chromobacterium violaceum. Front Microbiol 8, 349.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devine, J.H., Countryman, C., and Baldwin, T.O. (2002). Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux regulon of Vibrio fischeri ATCC 7744. Biochemistry 27, 837–842.

    Article  Google Scholar 

  • Doull, J.L., Singh, A.K., Hoare, M., and Ayer, S.W. (1994). Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: Effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13, 120–125.

    Article  CAS  PubMed  Google Scholar 

  • Du, P., Zhao, H., Zhang, H., Wang, R., Huang, J., Tian, Y., Luo, X., Luo, X., Wang, M., Xiang, Y., et al. (2020). De novo design of an intercellular signaling toolbox for multi-channel cell-cell communication and biological computation. Nat Commun 11, 4226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fast, D., Petkau, K., Ferguson, M., Shin, M., Galenza, A., Kostiuk, B., Pukatzki, S., and Foley, E. (2020). Vibrio cholerae-symbiont interactions inhibit intestinal repair in Drosophila. Cell Rep 30, 1088–1100.e5.

    Article  CAS  PubMed  Google Scholar 

  • Geske, G.D., O’Neill, J.C., Miller, D.M., Mattmann, M.E., and Blackwell, H.E. (2007). Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of N-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J Am Chem Soc 129, 13613–13625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geske, G.D., O’Neill, J.C., Miller, D.M., Wezeman, R.J., Mattmann, M.E., Lin, Q., and Blackwell, H.E. (2008). Comparative analyses of N-acylated homoserine lactones reveal unique structural features that dictate their ability to activate or inhibit quorum sensing. Chembiochem 9, 389–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison Iii, C.A., and Smith, H.O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–345.

    Article  CAS  PubMed  Google Scholar 

  • Guan, H., Li, Y., Zheng, J., Liu, N., Zhang, J., and Tan, H. (2019). Important role of a LAL regulator StaR in the staurosporine biosynthesis and high-production of Streptomyces fradiae CGMCC 4.576. Sci China Life Sci 62, 1638–1654.

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman, A., and Wood, T.K. (2008). Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu Rev Biomed Eng 10, 145–167.

    Article  CAS  PubMed  Google Scholar 

  • Juhász, J., Bihary, D., Jády, A., Pongor, S., and Ligeti, B. (2017). Differential signal sensitivities can contribute to the stability of multispecies bacterial communities. Biol Direct 12, 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato, J., Funa, N., Watanabe, H., Ohnishi, Y., and Horinouchi, S. (2007). Biosynthesis of γ-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA 104, 2378–2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000). Practical Streptomyces Genetics. Norwich: John Innes Foundation.

    Google Scholar 

  • Kylilis, N., Tuza, Z.A., Stan, G.B., and Polizzi, K.M. (2018). Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat Commun 9, 2677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, Y.J., Kitani, S., Kinoshita, H., and Nihira, T. (2008). Identification by gene deletion analysis of barS2, a gene involved in the biosynthesis of γ-butyrolactone autoregulator in Streptomyces virginiae. Arch Microbiol 189, 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.J., Kitani, S., and Nihira, T. (2010). Null mutation analysis of an afsA-family gene, barX, that is involved in biosynthesis of the γ-butyrolactone autoregulator in Streptomyces virginiae. Microbiology 156, 206–210.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Zhang, J., Tian, Y., and Tan, H. (2019). Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Sci China Life Sci 62, 276–279.

    Article  PubMed  Google Scholar 

  • Liu, G., Chater, K.F., Chandra, G., Niu, G., and Tan, H. (2013). Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 77, 112–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClean, K.H., Winson, M.K., Fish, L., Taylor, A., Chhabra, S.R., Camara, M., Daykin, M., Lamb, J.H., Swift, S., Bycroft, B.W., et al. (1997). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.

    Article  CAS  PubMed  Google Scholar 

  • Miano, A., Liao, M.J., and Hasty, J. (2020). Inducible cell-to-cell signaling for tunable dynamics in microbial communities. Nat Commun 11, 1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael, B., Smith, J.N., Swift, S., Heffron, F., and Ahmer, B.M.M. (2001). SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183, 5733–5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohoshi, T., Kato, M., Fukamachi, K., Kato, N., and Ikeda, T. (2008). N-acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett 279, 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T.B., Kitani, S., Shimma, S., and Nihira, T. (2018). Butenolides from Streptomyces albus J1074 act as external signals to stimulate avermectin production in Streptomyces avermitilis. Appl Environ Microbiol 84, e02791–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, G., Chater, K.F., Tian, Y., Zhang, J., and Tan, H. (2016). Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 40, 554–573.

    Article  CAS  PubMed  Google Scholar 

  • O’Loughlin, C.T., Miller, L.C., Siryaporn, A., Drescher, K., Semmelhack, M.F., and Bassler, B.L. (2013). A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 110, 17981–17986.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, S.B., Bertolli, S.K., and Mougous, J.D. (2020). The central role of interbacterial antagonism in bacterial life. Curr Biol 30, R1203–R1214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riglar, D.T., and Silver, P.A. (2018). Engineering bacteria for diagnostic and therapeutic applications. Nat Rev Microbiol 16, 214–225.

    Article  CAS  PubMed  Google Scholar 

  • Rodelas, B., Lithgow, J.K., Wisniewski-Dye, F., Hardman, A., Wilkinson, A., Economou, A., Williams, P., and Downie, J.A. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181, 3816–3823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schütz, C., Ho, D.K., Hamed, M.M., Abdelsamie, A.S., Röhrig, T., Herr, C., Kany, A.M., Rox, K., Schmelz, S., Siebenbürger, L., et al. (2021). A new PqsR inverse agonist potentiates tobramycin efficacy to eradicate Pseudomonas aeruginosa biofilms. Adv Sci 8, 2004369.

    Article  Google Scholar 

  • Seed, P.C., Passador, L., and Iglewski, B.H. (1995). Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177, 654–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidda, J.D., Poon, V., Song, L., Wang, W., Yang, K., and Corre, C. (2016). Overproduction and identification of butyrolactones SCB1–8 in the antibiotic production superhost Streptomyces M1152. Org Biomol Chem 14, 6390–6393.

    Article  CAS  PubMed  Google Scholar 

  • Stulberg, E., Fravel, D., Proctor, L.M., Murray, D.M., LoTempio, J., Chrisey, L., Garland, J., Goodwin, K., Graber, J., Harris, M.C., et al. (2016). An assessment of US microbiome research. Nat Microbiol 1, 15015.

    Article  CAS  PubMed  Google Scholar 

  • Swem, L.R., Swem, D.L., O’Loughlin, C.T., Gatmaitan, R., Zhao, B., Ulrich, S.M., and Bassler, B.L. (2009). A quorum-sensing antagonist targets both membrane-bound and cytoplasmic receptors and controls bacterial pathogenicity. Mol Cell 35, 143–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.A., Oliveira, R.A., Djukovic, A., Ubeda, C., and Xavier, K.B. (2015). Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10, 1861–1871.

    Article  CAS  PubMed  Google Scholar 

  • Valente, R.S., Nadal-Jimenez, P., Carvalho, A.F.P., Vieira, F.J.D., and Xavier, K.B. (2017). Signal integration in quorum sensing enables cross-species induction of virulence in Pectobacterium wasabiae. mBio 8, 16.

    Article  Google Scholar 

  • Wang, W., Ji, J., Li, X., Wang, J., Li, S., Pan, G., Fan, K., and Yang, K. (2014). Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. Proc Natl Acad Sci USA 111, 5688–5693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellington, S., and Greenberg, E.P. (2019). Quorum sensing signal selectivity and the potential for interspecies cross talk. mBio 10, 14.

    Article  Google Scholar 

  • Wu, F., Menn, D.J., and Wang, X. (2014). Quorum-sensing crosstalk-driven synthetic circuits: from unimodality to trimodality. Chem Biol 21, 1629–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, G., Wang, J., Wang, L., Tian, X., Yang, H., Fan, K., Yang, K., and Tan, H. (2010). “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem 285, 27440–27448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Murphy, P.J., Kerr, A., and Tate, M.E. (1993). Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones. Nature 362, 446–448.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, K., Li, J., Zhang, X., Chen, Q., Liu, M., Ao, X., Gu, Y., Liao, D., Xu, K., Ma, M., et al. (2018). Actinobacteria associated with Glycyrrhiza inflata Bat. are diverse and have plant growth promoting and antimicrobial activity. Sci Rep 8, 13661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, R., Lang, T., Yan, W., Zhu, X., Huang, X., Yin, Q., and Li, Y. (2021). Gut microbiota: Influence on carcinogenesis and modulation strategies by drug delivery systems to improve cancer therapy. Adv Sci 8, 2003542.

    Article  CAS  Google Scholar 

  • Zou, Z., Du, D., Zhang, Y., Zhang, J., Niu, G., and Tan, H. (2014). A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 94, 490–505.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0901900 and 2020YFA0907700) and the National Natural Science Foundation of China (31771378 and 31800029). We thank Drs Guomin Ai, Wenzhao Wang, and Jinwei Ren (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for assistance with MS and NMR spectroscopy, Luyan Ma (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for providing E. coli S17-1 λpir and the plasmid pJN105, and Professor Vittorio Venturi (International Centre for Genetic Engineering and Biotechnology, Trieste, Italy) for the advice on gene disruption in C. violaceum CV12472. We thank Professor Shuishan Song (Biology Institute, Hebei Academy of Sciences, China) for kindly offering C. violaceum CV31532, Professor Junli Zhu (College of Food Science and Biotechnology, Zhejiang Gongshang University, China) for CV026, and Professor Weishan Wang (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for plasmids pCS26-Pac and pACYC184. We are grateful to Professor Wenbo Ma (John Innes Centre, Norwich, UK) for the critical reading and helpful suggestions in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jihui Zhang or Huarong Tan.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wang, W., Li, J. et al. A widespread response of Gram-negative bacterial acyl-homoserine lactone receptors to Gram-positive Streptomyces γ-butyrolactone signaling molecules. Sci. China Life Sci. 64, 1575–1589 (2021). https://doi.org/10.1007/s11427-021-1956-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1956-8

Keywords

Navigation