Skip to main content
Log in

Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Genome editing is an unprecedented technological breakthrough but low plant regeneration frequencies and genotype dependence hinder its implementation for crop improvement. Here, we found that transient expression of a complex of the growth regulators TaGRF4 and TaGIF1 (TaGRF4-TaGIF1) increased regeneration and genome editing frequency in wheat. When we introduced synonymous mutation in the miR396 target site of TaGRF4, the resulting complex (mTaGRF4-TaGIF1) performed better than original TaGRF4-TaGIF1. Use of mTaGRF4-TaGIF1 together with a cytosine base editor targeting TaALS resulted in 2–9-fold increases in regeneration and transgene-free genome editing in 11 elite common wheat cultivars. Therefore, mTaGRF4-TaGIF1 will undoubtedly be of great value in crop improvement and especially in commercial applications, since it greatly increased the range of cultivars available for transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter, F., Springer, N.M., Bartley, L.E., Blechl, A.E., Brutnell, T.P., Citovsky, V., Conrad, L.J., Gelvin, S.B., Jackson, D.P., Kausch, A.P., et al. (2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510–1520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., et al. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2, 15195.

    Article  Google Scholar 

  • Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70, 667–697.

    Article  CAS  Google Scholar 

  • Debernardi, J.M., Rodriguez, R.E., Mecchia, M.A., and Palatnik, J.F. (2012). Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8, e1002419.

    Article  CAS  Google Scholar 

  • Debernardi, J.M., Mecchia, M.A., Vercruyssen, L., Smaczniak, C., Kaufmann, K., Inze, D., Rodriguez, R.E., and Palatnik, J.F. (2014). Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity. Plant J 79, 413–426.

    Article  CAS  Google Scholar 

  • Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., and Dubcovsky, J. (2020). A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat Biotechnol 38, 1274–1279.

    Article  CAS  Google Scholar 

  • Duan, P., Ni, S., Wang, J., Zhang, B., Xu, R., Wang, Y., Chen, H., Zhu, X., and Li, Y. (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants 2, 15203.

    Article  Google Scholar 

  • Gao, C. (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621–1635.

    Article  CAS  Google Scholar 

  • Gelvin, S.B. (2003). Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67, 16–37.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, B., Sardesai, N., Arling, M., Lowe, K., Hoerster, G., Betts, S., and Jones, A.T. (2019). Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants 8, 38.

    Article  CAS  Google Scholar 

  • Hoerster, G., Wang, N., Ryan, L., Wu, E., Anand, A., McBride, K., Lowe, K., Jones, T., and Gordon-Kamm, B. (2020). Use of non-integrating Zm-Wus2 vectors to enhance maize transformation. In Vitro Cell Dev Biol Plant 56, 265–279.

    Article  CAS  Google Scholar 

  • Horiguchi, G., Kim, G.T., and Tsukaya, H. (2005). The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43, 68–78.

    Article  CAS  Google Scholar 

  • Hu, S., Yang, H., Gao, H., Yan, J., and Xie, D. (2021). Control of seed size by jasmonate. Sci China Life Sci doi: https://doi.org/10.1007/s11427-020-1899-8.

  • Kausch, A.P., Nelson-Vasilchik, K., Hague, J., Mookkan, M., Quemada, H., Dellaporta, S., Fragoso, C., and Zhang, Z.J. (2019). Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. Plant Sci 281, 186–205.

    Article  CAS  Google Scholar 

  • Kim, J.H. (2019). Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Rep 52, 227–238.

    Article  CAS  Google Scholar 

  • Kong, J., Martin-Ortigosa, S., Finer, J., Orchard, N., Gunadi, A., Batts, L. A., Thakare, D., Rush, B., Schmitz, O., Stuiver, M., et al. (2020). Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Front Plant Sci 11, 572319.

    Article  Google Scholar 

  • Li, S., Gao, F., Xie, K., Zeng, X., Cao, Y., Zeng, J., He, Z., Ren, Y., Li, W., Deng, Q., et al. (2016). The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice. Plant Biotechnol J 14, 2134–2146.

    Article  CAS  Google Scholar 

  • Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., et al. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595–600.

    Article  CAS  Google Scholar 

  • Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., et al. (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261.

    Article  CAS  Google Scholar 

  • Liebsch, D., and Palatnik, J.F. (2020). MicroRNA miR396, GRF transcription factors and GIF co-regulators: a conserved plant growth regulatory module with potential for breeding and biotechnology. Curr Opin Plant Biol 53, 31–42.

    Article  CAS  Google Scholar 

  • Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., et al. (2016). Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998–2015.

    Article  CAS  Google Scholar 

  • Lowe, K., La Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., and Gordon-Kamm, W. (2018). Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev Biol Plant 54, 240–252.

    Article  CAS  Google Scholar 

  • Luo, G., and Palmgren, M. (2021). GRF-GIF chimeras boost plant regeneration. Trends Plant Sci 26, 201–204.

    Article  CAS  Google Scholar 

  • Ma, K., and Liu, Y.G. (2018). DELLA-GRF4-mediated coordination of growth and nitrogen metabolism paves the way for a new Green Revolution. Sci China Life Sci 61, 1130–1131.

    Article  Google Scholar 

  • Mookkan, M., Nelson-Vasilchik, K., Hague, J., Zhang, Z.J., and Kausch, A. P. (2017). Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Rep 36, 1477–1491.

    Article  CAS  Google Scholar 

  • Omidbakhshfard, M.A., Proost, S., Fujikura, U., and Mueller-Roeber, B. (2015). Growth-regulating factors (GRFs): A small transcription factor family with important functions in plant biology. Mol Plant 8, 998–1010.

    Article  CAS  Google Scholar 

  • Omidbakhshfard, M.A., Fujikura, U., Olas, J.J., Xue, G.P., Balazadeh, S., and Mueller-Roeber, B. (2018). GROWTH-REGULATING FACTOR 9 negatively regulates Arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia. PLoS Genet 14, e1007484.

    Article  Google Scholar 

  • Rodriguez, R.E., Mecchia, M.A., Debernardi, J.M., Schommer, C., Weigel, D., and Palatnik, J.F. (2010). Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137, 103–112.

    Article  CAS  Google Scholar 

  • Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et al. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686–688.

    Article  CAS  Google Scholar 

  • Shimano, S., Hibara, K.I., Furuya, T., Arimura, S.I., Tsukaya, H., and Itoh, J.I. (2018). Conserved functional control, but distinct regulation of cell proliferation in rice and Arabidopsis leaves revealed by comparative analysis of GRF-INTERACTING FACTOR 1 orthologs. Development 145, 159624.

    Article  Google Scholar 

  • Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., and Qiu, J.L. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947–951.

    Article  CAS  Google Scholar 

  • Yoshioka, Y., Takahashi, Y., Matsuoka, K., Nakamura, K., Koizumi, J., Kojima, M., and Machida, Y. (1996). Transient gene expression in plant cells mediated by Agrobacterium tumefaciens: Application for the analysis of virulence loci. Plant Cell Physiol 37, 782–789.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., and Gao, C. (2016). Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7, 12617.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, Q., and Chen, Q.J. (2020a). Agrobacterium-mediated delivery of CRISPR/Cas reagents for genome editing in plants enters an era of ternary vector systems. Sci China Life Sci 63, 1491–1498.

    Article  CAS  Google Scholar 

  • Zhang, Q., Yin, K., Liu, G., Li, S., Li, M., and Qiu, J.L. (2020b). Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Sci China Life Sci 63, 1918–1927.

    Article  CAS  Google Scholar 

  • Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., and Gao, C. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438–440.

    Article  CAS  Google Scholar 

  • Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., and Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36, 950–953.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Precision Seed Design and Breeding, XDA24020102 and XDA24010402), the National Natural Science Foundation of China (31788103 and 31971370), and the Chinese Academy of Sciences (QYZDY-SSW-SMC030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuanyao Chai or Caixia Gao.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, F., Xing, S., Xue, C. et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci. 65, 731–738 (2022). https://doi.org/10.1007/s11427-021-1949-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1949-9

Navigation