Skip to main content
Log in

Novel loci and potential mechanisms of major depressive disorder, bipolar disorder, and schizophrenia

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Different psychiatric disorders share genetic relationships and pleiotropic loci to certain extent. We integrated and analyzed datasets related to major depressive disorder (MDD), bipolar disorder (BIP), and schizophrenia (SCZ) from the Psychiatric Genomics Consortium using multitrait analysis of genome-wide association analysis (MTAG). MTAG significantly increased the effective sample size from 99,773 to 119,754 for MDD, from 909,061 to 1,450,972 for BIP, and from 856,677 to 940,613 for SCZ. We discovered 7, 32, and 43 novel lead single nucleotide polymorphisms (SNPs) and 1, 6, and 3 novel causal SNPs for MDD, BIP, and SCZ, respectively, after fine-mapping. We identified rs8039305 in the FURIN gene as a novel pleiotropic locus across the three disorders. We performed marker analysis of genomic annotation (MAGMA) and Hi-C-coupled MAGMA (H-MAGMA) based gene-set analysis and identified 101 genes associated with the three disorders, which were enriched in the regulation of postsynaptic membranes, postsynaptic membrane dopaminergic synapses, and Notch signaling pathway. Next, we performed Mendelian randomization analysis using different tools and detected a causal effect of BIP on SCZ. Overall, we demonstrated the usage of combined genome-wide association studies summary statistics for exploring potential novel mechanisms of the three psychiatric disorders, providing an alternative approach to integrate publicly available summary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ables, J.L., Breunig, J.J., Eisch, A.J., and Rakic, P. (2011). Not(ch) just development: Notch signalling in the adult brain. Nat Rev Neurosci 12, 269–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbarian, S., Liu, C., Knowles, J.A., Vaccarino, F.M., Farnham, P.J., Crawford, G.E., Jaffe, A.E., Pinto, D., Dracheva, S., Geschwind, D.H., et al. (2015). The PsychENCODE project. Nat Neurosci 18, 1707–1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albert, F.W., Bloom, J.S., Siegel, J., Day, L., and Kruglyak, L. (2018). Genetics of trans-regulatory variation in gene expression. eLife 7, e35471.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreazza, A.C., Wang, J.F., Salmasi, F., Shao, L., and Young, L.T. (2013). Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem 127, 552–561.

    Article  CAS  PubMed  Google Scholar 

  • Arion, D., Huo, Z., Enwright, J.F., Corradi, J.P., Tseng, G., and Lewis, D.A. (2017). Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders. Biol Psychiatry 82, 594–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autism Spectrum Disorders Working Group of The Psychiatric Genomics, C. (2017). Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism 8, 21.

    Article  Google Scholar 

  • Benner, C., Spencer, C.C.A., Havulinna, A.S., Salomaa, V., Ripatti, S., and Pirinen, M. (2016). FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berk, M., Dodd, S., Kauer-Sant’anna, M., Malhi, G.S., Bourin, M., Kapczinski, F., and Norman, T. (2007). Dopamine dysregulation syndrome: implications for a dopamine hypothesis of bipolar disorder. Acta Psychiatr Scand 116, 41–49.

    Article  Google Scholar 

  • Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics, C. (2018). Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell 173, 1705–1715.e16.

    Article  Google Scholar 

  • Bulik-Sullivan, B., Finucane, H.K., Anttila, V., Gusev, A., Day, F.R., Loh, P.R., Duncan, L., Perry, J.R.B., Patterson, N., Robinson, E.B., et al. (2015a). An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015b). LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buniello, A., MacArthur, J.A.L., Cerezo, M., Harris, L.W., Hayhurst, J., Malangone, C., McMahon, A., Morales, J., Mountjoy, E., Sollis, E., et al. (2019). The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47, D1005–D1012.

    Article  CAS  PubMed  Google Scholar 

  • Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S., Xing, Y., Lubischer, J.L., Krieg, P.A., Krupenko, S.A., et al. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28, 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, J., Marini, S., Pera, J., Norrving, B., Jimenez-Conde, J., Roquer, J., Fernandez-Cadenas, I., Tirschwell, D.L., Selim, M., Brown, D.L., et al. (2019). Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain 142, 3176–3189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics, C. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379.

    Article  Google Scholar 

  • Cross-Disorder Group of the Psychiatric Genomics, C. (2019). Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482.e11.

    Article  Google Scholar 

  • Czarny, P., Kwiatkowski, D., Toma, M., Kubiak, J., Sliwinska, A., Talarowska, M., Szemraj, J., Maes, M., Galecki, P., and Sliwinski, T. (2017). Impact of single nucleotide polymorphisms of base excision repair genes on DNA damage and efficiency of DNA repair in recurrent depression disorder. Mol Neurobiol 54, 4150–4159.

    Article  CAS  PubMed  Google Scholar 

  • de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorfman, M.D., Kerr, B., Garcia-Rudaz, C., Paredes, A.H., Dissen, G.A., and Ojeda, S.R. (2011). Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology 152, 5005–5016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S.L., Beesley, J., French, J.D., and Dunning, A.M. (2013). Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet 93, 779–797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.R., Anttila, V., Xu, H., Zang, C., Farh, K., et al. (2015). Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47, 1228–1235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forstner, A.J., Hecker, J., Hofmann, A., Maaser, A., Reinbold, C.S., Mühleisen, T.W., Leber, M., Strohmaier, J., Degenhardt, F., Treutlein, J., et al. (2017). Identification of shared risk loci and pathways for bipolar disorder and schizophrenia. PLoS ONE 12, e0171595.

    Article  PubMed  PubMed Central  Google Scholar 

  • 1000 Genomes Project, C. (2015). A global reference for human genetic variation. Nature 526, 68–74.

    Article  Google Scholar 

  • Grubman, A., Chew, G., Ouyang, J.F., Sun, G., Choo, X.Y., McLean, C., Simmons, R.K., Buckberry, S., Vargas-Landin, D.B., Poppe, D., et al. (2019). A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22, 2087–2097.

    Article  CAS  PubMed  Google Scholar 

  • GTEx, C. (2015). The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660.

    Article  Google Scholar 

  • Hemani, G., Tilling, K., and Davey Smith, G. (2017). Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13, e1007081.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemani, G., Zheng, J., Elsworth, B., Wade, K.H., Haberland, V., Baird, D., Laurin, C., Burgess, S., Bowden, J., Langdon, R., et al. (2018). The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, W.D., Marioni, R.E., Maghzian, O., Ritchie, S.J., Hagenaars, S.P., McIntosh, A.M., Gale, C.R., Davies, G., and Deary, I.J. (2019). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry 24, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Hjelm, B.E., Rollins, B., Mamdani, F., Lauterborn, J.C., Kirov, G., Lynch, G., Gall, C.M., Sequeira, A., and Vawter, M.P. (2015). Evidence of mitochondrial dysfunction within the complex genetic etiology of schizophrenia. Mol Neuropsychiatry 1, 201–219.

    PubMed  PubMed Central  Google Scholar 

  • Huttlin, E.L., Bruckner, R.J., Navarrete-Perea, J., Cannon, J.R., Baltier, K., Gebreab, F., Gygi, M.P., Thornock, A., Zarraga, G., Tam, S., et al. (2021). Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell doi: https://doi.org/10.1016/j.cell.2021.04.011.

  • Irwin, M.R., and Cole, S.W. (2011). Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 11, 625–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, I.E., Savage, J.E., Watanabe, K., Bryois, J., Williams, D.M., Steinberg, S., Sealock, J., Karlsson, I.K., Hägg, S., Athanasiu, L., et al. (2019). Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51, 404–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., and Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 46, 310–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, M., Trampush, J.W., Yu, J., Knowles, E., Davies, G., Liewald, D.C., Starr, J.M., Djurovic, S., Melle, I., Sundet, K., et al. (2017). Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets. Cell Rep 21, 2597–2613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, M., Chen, C.Y., Li, Z., Martin, A.R., Bryois, J., Ma, X., Gaspar, H., Ikeda, M., Benyamin, B., Brown, B.C., et al. (2019). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet 51, 1670–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanz, T.A., Reinhart, V., Sheehan, M.J., Rizzo, S.J.S., Bove, S.E., James, L. C., Volfson, D., Lewis, D.A., and Kleiman, R.J. (2019). Postmortem transcriptional profiling reveals widespread increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum, and hippocampus among matched tetrads of controls with subjects diagnosed with schizophrenia, bipolar or major depressive disorder. Transl Psychiatry 9, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leppert, B., Millard, L.A.C., Riglin, L., Davey Smith, G., Thapar, A., Tilling, K., Walton, E., and Stergiakouli, E. (2020). A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank. PLoS Genet 16, e1008185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Santpere, G., Imamura Kawasawa, Y., Evgrafov, O.V., Gulden, F.O., Pochareddy, S., Sunkin, S.M., Li, Z., Shin, Y., Zhu, Y., et al. (2018). Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science 362, eaat7615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., Wernersson, R., Hansen, R.B., Horn, H., Mercer, J., Slodkowicz, G., Workman, C.T., Rigina, O., Rapacki, K., Stærfeldt, H.H., et al. (2017). A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14, 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Liu, F., Gong, X., Yao, X., Cui, L., Yin, Z., Li, C., Tang, Y., and Wang, F. (2019). Variation in the CACNB2 gene is associated with functional connectivity of the Hippocampus in bipolar disorder. BMC Psychiatry 19, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotan, A., Fenckova, M., Bralten, J., Alttoa, A., Dixson, L., Williams, R. W., and van der Voet, M. (2014). Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders. Front Neurosci 8, 331.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck, K., Kim, D.K., Lambourne, L., Spirohn, K., Begg, B.E., Bian, W., Brignall, R., Cafarelli, T., Campos-Laborie, F.J., Charloteaux, B., et al. (2020). A reference map of the human binary protein interactome. Nature 580, 402–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P., Sandstrom, R., Qu, H., Brody, J., et al. (2012). Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris, A.P., Voight, B.F., Teslovich, T.M., Ferreira, T., Segrè, A.V., Steinthorsdottir, V., Strawbridge, R.J., Khan, H., Grallert, H., Mahajan, A., et al. (2012). Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44, 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, J., Knoblauch, N., Marcus, J.H., Stephens, M., and He, X. (2020). Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet 52, 740–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel, M., Jansen, P.R., Stringer, S., Watanabe, K., de Leeuw, C.A., Bryois, J., Savage, J.E., Hammerschlag, A.R., Skene, N.G., Munoz-Manchado, A.B., et al. (2018). Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet 50, 920–927.

    Article  CAS  PubMed  Google Scholar 

  • Network and Pathway Analysis Subgroup of Psychiatric Genomics, C. (2015). Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 18, 199–209.

    Article  Google Scholar 

  • Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47, W191–W198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussos, P., Mitchell, A.C., Voloudakis, G., Fullard, J.F., Pothula, V.M., Tsang, J., Stahl, E.A., Georgakopoulos, A., Ruderfer, D.M., Charney, A., et al. (2014). A role for noncoding variation in schizophrenia. Cell Rep 9, 1417–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaid, D.J., Chen, W., and Larson, N.B. (2018). From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet 19, 491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia Psychiatric Genome-Wide Association Study, C. (2011). Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43, 969–976.

    Article  Google Scholar 

  • Sey, N.Y.A., Hu, B., Mah, W., Fauni, H., McAfee, J.C., Rajarajan, P., Brennand, K.J., Akbarian, S., and Won, H. (2020). A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci 23, 583–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl, E.A., Breen, G., Forstner, A.J., McQuillin, A., Ripke, S., Trubetskoy, V., Mattheisen, M., Wang, Y., Coleman, J.R.I., Gaspar, H.A., et al. (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet 51, 793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34, D535–D539.

    Article  CAS  PubMed  Google Scholar 

  • Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., Downey, P., Elliott, P., Green, J., Landray, M., et al. (2015). UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tindi, J.O., Chávez, A.E., Cvejic, S., Calvo-Ochoa, E., Castillo, P.E., and Jordan, B.A. (2015). ANKS1B gene product AIDA-1 controls hippocampal synaptic transmission by regulating GluN2B subunit localization. J Neurosci 35, 8986–8996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turley, P., Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J., Fontana, M. A., Nguyen-Viet, T.A., Wedow, R., Zacher, M., Furlotte, N.A., et al. (2018). Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat Genet 50, 229–237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbanck, M., Chen, C.Y., Neale, B., and Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50, 693–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., and Yang, J. (2017). 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101, 5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, K.K., Yang, Z., Sarkis, G., Torres, I., and Raghavan, V. (2017). Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets 21, 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma, D. (2017). Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1826.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K., Stringer, S., Frei, O., Umićević Mirkov, M., de Leeuw, C., Polderman, T.J.C., van der Sluis, S., Andreassen, O.A., Neale, B.M., and Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51, 1339–1348.

    Article  CAS  PubMed  Google Scholar 

  • Won, H., de la Torre-Ubieta, L., Stein, J.L., Parikshak, N.N., Huang, J., Opland, C.K., Gandal, M.J., Sutton, G.J., Hormozdiari, F., Lu, D., et al. (2016). Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wray, N.R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E.M., Abdellaoui, A., Adams, M.J., Agerbo, E., Air, T.M., Andlauer, T.M.F., et al. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 50, 668–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., Cao, H., Baranova, A., Huang, H., Li, S., Cai, L., Rao, S., Dai, M., Xie, M., Dou, Y., et al. (2020). Multi-trait analysis for genome-wide association study of five psychiatric disorders. Transl Psychiatry 10, 209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, D.W., O’Connor, L.J., Price, A.L., and Gusev, A. (2020). Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat Genet 52, 626–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, K., and Gaiano, N. (2005). Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat Neurosci 8, 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, B., Luo, T., Li, T., Li, Y., Zhang, J., Shan, Y., Wang, X., Yang, L., Zhou, F., Zhu, Z., et al. (2019). Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat Genet 51, 1637–1644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, J., Erzurumluoglu, A.M., Elsworth, B.L., Kemp, J.P., Howe, L., Haycock, P.C., Hemani, G., Tansey, K., Laurin, C., Pourcain, B.S., et al. (2017). LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z., Zheng, Z., Zhang, F., Wu, Y., Trzaskowski, M., Maier, R., Robinson, M.R., McGrath, J.J., Visscher, P.M., Wray, N.R., et al. (2018). Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun 9, 224.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2015AA020108), the National Natural Science Foundation of China (31671377, 81671326), Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science (East China Normal University) of Ministry of Education, the Fundamental Research Funds for the Central Universities, Beihang University & Capital Medical University Advanced Innovation Center for Big Data-Based Precision Medicine Plan (BHME-201804, BHME-201904), and The Special Fund of the Pediatric Medical Coordinated Development Center of Beijing Hospitals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieliu Shi.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yi, Z. & Shi, T. Novel loci and potential mechanisms of major depressive disorder, bipolar disorder, and schizophrenia. Sci. China Life Sci. 65, 167–183 (2022). https://doi.org/10.1007/s11427-020-1934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1934-x

Navigation