Skip to main content
Log in

LATS1 K751 acetylation blocks activation of Hippo signalling and switches LATS1 from a tumor suppressor to an oncoprotein

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Large tumor suppressor 1 (LATS1) is the key kinase controlling activation of Hippo signalling pathway. Post-translational modifications of LATS1 modulate its kinase activity. However, detailed mechanism underlying LATS1 stability and activation remains elusive. Here we report that LATS1 is acetylated by acetyltransferase CBP at K751 and is deacetylated by deacetylases SIRT3 and SIRT4. Acetylation at K751 stabilized LATS1 by decreasing LATS1 ubiquitination and inhibited LATS1 activation by reducing its phosphorylation. Mechanistically, LATS1 acetylation resulted in inhibition of YAP phosphorylation and degradation, leading to increased YAP nucleus translocation and promoted target gene expression. Functionally, LATS1-K751Q, the acetylation mimic mutant potentiated lung cancer cell migration, invasion and tumor growth, whereas LATS1-K751R, the acetylation deficient mutant inhibited these functions. Taken together, we demonstrated a previously unidentified post-translational modification of LATS1 that converts LATS1 from a tumor suppressor to a tumor promoter by suppression of Hippo signalling through acetylation of LATS1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cai, J., Zhang, N., Zheng, Y., de Wilde, R.F., Maitra, A., and Pan, D. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24, 2383–2388.

    Article  CAS  Google Scholar 

  • Chan, E.H.Y., Nousiainen, M., Chalamalasetty, R.B., Schäfer, A., Nigg, E. A., and Silljé, H.H.W. (2005). The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene 24, 2076–2086.

    Article  CAS  Google Scholar 

  • Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  Google Scholar 

  • Dai, X., Xin, Y., Xu, W., Tian, X., Wei, X., and Zhang, H. (2020). CBP-mediated Slug acetylation stabilizes Slug and promotes EMT and migration of breast cancer cells. Sci China Life Sci doi: https://doi.org/10.1007/s11427-020-1736-5.

  • Halder, G., and Johnson, R.L. (2011). Hippo signaling: growth control and beyond. Development 138, 9–22.

    Article  CAS  Google Scholar 

  • He, M., Zhou, Z., Shah, A.A., Hong, Y., Chen, Q., and Wan, Y. (2016). New insights into posttranslational modifications of Hippo pathway in carcinogenesis and therapeutics. Cell Div 11, 4.

    Article  Google Scholar 

  • Ho, K.C., Zhou, Z., She, Y.M., Chun, A., Cyr, T.D., and Yang, X. (2011). Itch E3 ubiquitin ligase regulates large tumor suppressor 1 stability. Proc Natl Acad Sci USA 108, 4870–4875.

    Article  CAS  Google Scholar 

  • Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434.

    Article  CAS  Google Scholar 

  • Jiang, L., Kon, N., Li, T., Wang, S.J., Su, T., Hibshoosh, H., Baer, R., and Gu, W. (2015). Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62.

    Article  CAS  Google Scholar 

  • Justice, R.W., Zilian, O., Woods, D.F., Noll, M., and Bryant, P.J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534–546.

    Article  CAS  Google Scholar 

  • Latham, J.A., and Dent, S.Y.R. (2007). Cross-regulation of histone modifications. Nat Struct Mol Biol 14, 1017–1024.

    Article  CAS  Google Scholar 

  • Lei, Q.Y., Zhang, H., Zhao, B., Zha, Z.Y., Bai, F., Pei, X.H., Zhao, S., Xiong, Y., and Guan, K.L. (2008). TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol 28, 2426–2436.

    Article  CAS  Google Scholar 

  • Li, W., Cooper, J., Zhou, L., Yang, C., Erdjument-Bromage, H., Zagzag, D., Snuderl, M., Ladanyi, M., Hanemann, C.O., Zhou, P., et al. (2014). Merlin/NF2 loss-driven tumorigenesis linked to CRL4DCAF1-mediated inhibition of the Hippo pathway kinases Lats1 and 2 in the nucleus. Cancer Cell 26, 48–60.

    Article  Google Scholar 

  • Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., et al. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nat Cell Biol 17, 95–103.

    Article  CAS  Google Scholar 

  • Matallanas, D., Romano, D., Hamilton, G., Kolch, W., and O’Neill, E. (2008). A Hippo in the ointment: MST signalling beyond the fly. Cell Cycle 7, 879–884.

    Article  CAS  Google Scholar 

  • Mei, L., Yuan, L., Shi, W., Fan, S., Tang, C., Fan, X., Yang, W., Qian, Y., Hussain, M., and Wu, X. (2017). SUMOylation of large tumor suppressor 1 at Lys751 attenuates its kinase activity and tumor-suppressor functions. Cancer Lett 386, 1–11.

    Article  CAS  Google Scholar 

  • Meng, Z., Moroishi, T., and Guan, K.L. (2016). Mechanisms of Hippo pathway regulation. Genes Dev 30, 1–17.

    Article  CAS  Google Scholar 

  • Nterma, P., Panopoulou, E., Papadaki-Petrou, E., and Assimakopoulou, M. (2020). Immunohistochemical profile of tumor suppressor proteins RASSF1A and LATS1/2 in relation to p73 and YAP expression, of human inflammatory bowel disease and normal intestine. Pathol Oncol Res 26, 567–574.

    Article  CAS  Google Scholar 

  • Oka, T., Mazack, V., and Sudol, M. (2008). Mst2 and Lats kinases regulate apoptotic function of yes kinase-associated protein (YAP). J Biol Chem 283, 27534–27546.

    Article  CAS  Google Scholar 

  • Pan, B., Yang, Y., Li, J., Wang, Y., Fang, C., Yu, F.X., and Xu, Y. (2020). USP47-mediated deubiquitination and stabilization of YAP contributes to the progression of colorectal cancer. Protein Cell 11, 138–143.

    Article  Google Scholar 

  • Siegel, R.L., Fedewa, S.A., Miller, K.D., Goding-Sauer, A., Pinheiro, P.S., Martinez-Tyson, D., and Jemal, A. (2015). Cancer statistics for Hispanics/Latinos, 2015. CA-A Cancer J Clinicians 65, 457–480.

    Article  Google Scholar 

  • Wan, J., Zhan, J., Li, S., Ma, J., Xu, W., Liu, C., Xue, X., Xie, Y., Fang, W., Chin, Y.E., et al. (2015). PCAF-primed EZH2 acetylation regulates its stability and promotes lung adenocarcinoma progression. Nucleic Acids Res 43, 3591–3604.

    Article  CAS  Google Scholar 

  • Wan, J., Xu, W., Zhan, J., Ma, J., Li, X., Xie, Y., Wang, J., Zhu, W.G., Luo, J., and Zhang, H. (2016). PCAF-mediated acetylation of transcriptional factor HOXB9 suppresses lung adenocarcinoma progression by targeting oncogenic protein JMJD6. Nucleic Acids Res 44, 10662–10675.

    Article  CAS  Google Scholar 

  • Xu, T., Wang, W., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: The Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063.

    Article  CAS  Google Scholar 

  • Yang, X.J., and Seto, E. (2008). Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31, 449–461.

    Article  CAS  Google Scholar 

  • Yeung, B., Ho, K.C., and Yang, X. (2013). WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS ONE 8, e61027.

    Article  CAS  Google Scholar 

  • Yu, F.X., and Guan, K.L. (2013). The Hippo pathway: regulators and regulations. Genes Dev 27, 355–371.

    Article  CAS  Google Scholar 

  • Yu, F.X., Zhao, B., and Guan, K.L. (2015). Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163, 811–828.

    Article  CAS  Google Scholar 

  • Zhang, J., Smolen, G.A., and Haber, D.A. (2008). Negative regulation of YAP by LATS1 underscores evolutionary conservation of the Drosophila Hippo pathway. Cancer Res 68, 2789–2794.

    Article  CAS  Google Scholar 

  • Zhao, B., Wei, X., Li, W., Udan, R.S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747–2761.

    Article  CAS  Google Scholar 

  • Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J.D., Wang, C.Y., Chinnaiyan, A.M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962–1971.

    Article  CAS  Google Scholar 

  • Zhao, B., Lei, Q., and Guan, K.L. (2009). Mst out and HCC in. Cancer Cell 16, 363–364.

    Article  CAS  Google Scholar 

  • Zhao, B., Li, L., Lei, Q., and Guan, K.L. (2010). The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 24, 862–874.

    Article  CAS  Google Scholar 

  • Zhao, B., Tumaneng, K., and Guan, K.L. (2011). The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol 13, 877–883.

    Article  CAS  Google Scholar 

  • Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y., Thasler, W., Lee, J.T., Avruch, J., et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438.

    Article  CAS  Google Scholar 

  • Zhou, Q., Li, L., Zhao, B., and Guan, K.L. (2015). The Hippo pathway in heart development, regeneration, and diseases. Circ Res 116, 1431–1447.

    Article  CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by the National Natural Science Foundation of China (81730071, 81972616, 81230051, 81472734, 31170711 and 81773199), the Ministry of Science and Technology of China (2016YFC1302103 and 2015CB553906), Beijing Natural Science Foundation (7120002 and 7171005), and Peking University (BMU2018JC004, BMU20120314 and BMU20130364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongquan Zhang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xu, W., Liu, C. et al. LATS1 K751 acetylation blocks activation of Hippo signalling and switches LATS1 from a tumor suppressor to an oncoprotein. Sci. China Life Sci. 65, 129–141 (2022). https://doi.org/10.1007/s11427-020-1914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1914-3

Key Words

Navigation