Skip to main content

Advertisement

Log in

Fast and furious: insights of back splicing regulation during nascent RNA synthesis

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Alternative splicing of eukaryotic precursor (messenger) RNAs in the nucleus not only increases transcriptomic complexity, but also expands proteomic and functional diversity. In addition to basic types of alternative splicing, recent transcriptome-wide analyses have also suggested other new types of non-canonical splicing, such as back splicing and recursive splicing, and their widespread expression across species Increasing lines of evidence have suggested mechanisms for back splicing, including insights from analyses of nascent RNA sequencing. In this review, we discuss our current understanding of back splicing regulation, and highlight its distinct characteristics in processing during nascent RNA synthesis by taking advantage of metabolic tagging nascent RNA sequencing. Features of recursive splicing are also discussed in the perspective of nascent RNA sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aktaş, T., Avşar Ilık, İ., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mittler, G., Manke, T., Backofen, R., and Akhtar, A. (2017). DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature 544, 115–119.

    Article  PubMed  Google Scholar 

  • Ardehali, M.B., and Lis, J.T., (2009). Tracking rates of transcription and splicing in vivo. Nat Struct Mol Biol 16, 1123–1124.

    Article  CAS  PubMed  Google Scholar 

  • Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56, 55–66.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa-Morais, N.L., Irimia, M., Pan, Q., Xiong, H.Y., Gueroussov, S., Lee, L.J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., et al. (2012). The evolutionary landscape of alternative splicing in vertebrate species. Science 338, 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  • Bentley, D.L. (2014). Coupling mRNA processing with transcription in time and space. Nat Rev Genet 15, 163–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt, D.M., Pandya-Jones, A., Tong, A.J., Barozzi, I., Lissner, M.M., Natoli, G., Black, D.L., and Smale, S.T. (2012). Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black, D.L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72, 291–336.

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig, U., Gueroussov, S., Plocik, A.M., Graveley, B.R., and Blencowe, B.J. (2013). Dynamic integration of splicing within gene regulatory pathways. Cell 152, 1252–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, J., Zhou, W., Steemers, F., Trapnell, C., and Shendure, J. (2020). Scifate characterizes the dynamics of gene expression in single cells. Nat Biotechnol 38, 980–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L.L. (2016). The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17, 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.L. (2020). The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol 21, 475–490.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.L., and Yang, L. (2015). Regulation of circRNA biogenesis. RNA Biol 12, 381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Huang, V., Xu, X., Livingstone, J., Soares, F., Jeon, J., Zeng, Y., Hua, J.T., Petricca, J., Guo, H., et al. (2019). Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843.e22.

    Article  CAS  PubMed  Google Scholar 

  • Chu, Q., Zhang, X., Zhu, X., Liu, C., Mao, L., Ye, C., Zhu, Q.H., and Fan, L. (2017). PlantcircBase: a database for plant circular RNAs. Mol Plant 10, 1126–1128.

    Article  CAS  PubMed  Google Scholar 

  • Churchman, L.S., and Weissman, J.S. (2011). Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature 469, 368–373.

    Article  CAS  PubMed  Google Scholar 

  • Conn, S.J., Pillman, K.A., Toubia, J., Conn, V.M., Salmanidis, M., Phillips, C.A., Roslan, S., Schreiber, A.W., Gregory, P.A., and Goodall, G.J. (2015). The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  • Core, L.J., Waterfall, J.J., and Lis, J.T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322, 1845–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danko, C.G., Hah, N., Luo, X., Martins, A.L., Core, L., Lis, J.T., Siepel, A., and Kraus, W.L. (2013). Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50, 212–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, R., Ma, X.K., Chen, L.L., and Yang, L. (2017). Increased complexity of circRNA expression during species evolution. RNA Biol 14, 1064–1074.

    Article  PubMed  Google Scholar 

  • Drexler, H.L., Choquet, K., and Churchman, L.S. (2020). Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol Cell 77, 985–998.e8.

    Article  CAS  PubMed  Google Scholar 

  • Duff, M.O., Olson, S., Wei, X., Garrett, S.C., Osman, A., Bolisetty, M., Plocik, A., Celniker, S.E., and Graveley, B.R., (2015). Genome-wide identification of zero nucleotide recursive splicing in Drosophila. Nature 521, 376–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhard, F., Baptista, M.A.P., Krammer, T., Hennig, T., Lange, M., Arampatzi, P., Jürges, C.S., Theis, F.J., Saliba, A.E., and Dölken, L. (2019). scSLAM-seq reveals core features of transcription dynamics in single cells. Nature 571, 419–423.

    Article  CAS  PubMed  Google Scholar 

  • Fong, N., Kim, H., Zhou, Y., Ji, X., Qiu, J., Saldi, T., Diener, K., Jones, K., Fu, X.D., and Bentley, D.L. (2014). Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 28, 2663–2676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, G., Voichek, Y., Benjamin, S., Gilad, S., Amit, I., and Oren, M. (2014). 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol 15, R69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuchs, G., Voichek, Y., Rabani, M., Benjamin, S., Gilad, S., Amit, I., and Oren, M. (2015). Simultaneous measurement of genome-wide transcription elongation speeds and rates of RNA polymerase II transition into active elongation with 4sUDRB-seq. Nat Protoc 10, 605–618.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., and Zhao, F. (2018). Computational strategies for exploring circular RNAs. Trends Genet 34, 389–400.

    Article  CAS  PubMed  Google Scholar 

  • Georgomanolis, T., Sofiadis, K., and Papantonis, A. (2016). Cutting a long intron short: recursive splicing and its implications. Front Physiol 7, 598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert, W. (1978). Why genes in pieces? Nature 271, 501.

    Article  CAS  PubMed  Google Scholar 

  • Guarnerio, J., Zhang, Y., Cheloni, G., Panella, R., Mae Katon, J., Simpson, M., Matsumoto, A., Papa, A., Loretelli, C., Petri, A., et al. (2019). Intragenic antagonistic roles of protein and circRNA in tumorigenesis. Cell Res 29, 628–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J.U., Agarwal, V., Guo, H., and Bartel, D.P. (2014). Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15, 409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatton, A.R., Subramaniam, V., and Lopez, A.J. (1998). Generation of alternative ultrabithorax isoforms and stepwise removal of a large intron by resplicing at exon-exon junctions. Mol Cell 2, 787–796.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, G.J., Jung, L.A., Larsson, A.J.M., Lidschreiber, M., Andersson Forsman, O., Lidschreiber, K., Cramer, P., and Sandberg, R. (2019). NASC-seq monitors RNA synthesis in single cells. Nat Commun 10, 3138.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzog, V.A., Reichholf, B., Neumann, T., Rescheneder, P., Bhat, P., Burkard, T.R., Wlotzka, W., von Haeseler, A., Zuber, J., and Ameres, S. L. (2017). Thiol-linked alkylation of RNA to assess expression dynamics. Nat Methods 14, 1198–1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H.T., Orejuela, M.R., Piechotta, M., Levanon, E.Y., Landthaler, M., Dieterich, C., et al. (2015). Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep 10, 170–177.

    Article  CAS  PubMed  Google Scholar 

  • Jeck, W.R., and Sharpless, N.E. (2014). Detecting and characterizing circular RNAs. Nat Biotechnol 32, 453–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkers, I., Kwak, H., and Lis, J.T. (2014). Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jordán-Pla, A., Pérez-Martínez, M.E., and Pérez-Ortín, J.E. (2019). Measuring RNA polymerase activity genome-wide with highresolution run-on-based methods. Methods 159–160, 177–182.

    Article  PubMed  Google Scholar 

  • Kramer, M.C., Liang, D., Tatomer, D.C., Gold, B., March, Z.M., Cherry, S., and Wilusz, J.E. (2015). Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev 29, 2168–2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20, 675–691.

    Article  CAS  PubMed  Google Scholar 

  • Kwak, H., Fuda, N.J., Core, L.J., and Lis, J.T. (2013). Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339, 950–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y., and Rio, D.C. (2015). Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84, 291–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Li, X., Xue, W., Zhang, L., Yang, L.Z., Cao, S.M., Lei, Y.N., Liu, C. X., Guo, S.K., Shan, L., et al. (2021). Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat Methods 18, 51–59.

    Article  PubMed  Google Scholar 

  • Li, X., Liu, C.X., Xue, W., Zhang, Y., Jiang, S., Yin, Q.F., Wei, J., Yao, R. W., Yang, L., and Chen, L.L. (2017). Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell 67, 214–227.e7.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Yang, L., and Chen, L.L. (2018). The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71, 428–442.

    Article  CAS  PubMed  Google Scholar 

  • Liang, D., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., Cherry, S., and Wilusz, J.E. (2017). The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68, 940–954.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, D., and Wilusz, J.E. (2014). Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28, 2233–2247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, C.X., Li, X., Nan, F., Jiang, S., Gao, X., Guo, S.K., Xue, W., Cui, Y., Dong, K., Ding, H., et al. (2019). Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Su, H., Zhang, J., Liu, Y., Feng, C., and Han, F. (2020). Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 18, e3000582.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, X.K., Wang, M.R., Liu, C.X., Dong, R., Carmichael, G.G., Chen, L.L., and Yang, L. (2019). CIRCexplorer3: a CLEAR pipeline for direct comparison of circular and linear RNA expression. Genom Proteom Bioinform 17, 511–521.

    Article  Google Scholar 

  • Mahat, D.B., Kwak, H., Booth, G.T., Jonkers, I.H., Danko, C.G., Patel, R. K., Waters, C.T., Munson, K., Core, L.J., and Lis, J.T. (2016). Base-pair-resolution genome-wide mapping of active RNA polymerases using precision nuclear run-on (PRO-seq). Nat Protoc 11, 1455–1476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer, A., di Iulio, J., Maleri, S., Eser, U., Vierstra, J., Reynolds, A., Sandstrom, R., Stamatoyannopoulos, J.A., and Churchman, L.S. (2015). Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkin, J., Russell, C., Chen, P., and Burge, C.B. (2012). Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhar, M., Ebert, A., Neumann, T., Umkehrer, C., Jude, J., Wieshofer, C., Rescheneder, P., Lipp, J.J., Herzog, V.A., Reichholf, B., et al. (2018). SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 360, 800–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechaev, S., Fargo, D.C., dos Santos, G., Liu, L., Gao, Y., and Adelman, K., (2010). Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338.

    Article  CAS  PubMed  Google Scholar 

  • Nilsen, T.W., and Graveley, B.R. (2010). Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima, T., Gomes, T., Grosso, A.R.F., Kimura, H., Dye, M.J., Dhir, S., Carmo-Fonseca, M., and Proudfoot, N.J. (2015). Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima, T., Rebelo, K., Gomes, T., Grosso, A.R., Proudfoot, N.J., and Carmo-Fonseca, M. (2018). RNA polymerase II phosphorylated on CTD Serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol Cell 72, 369–379.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oesterreich, F.C., Herzel, L., Straube, K., Hujer, K., Howard, J., and Neugebauer, K.M. (2016). Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, Q., Shai, O., Lee, L.J., Frey, B.J., and Blencowe, B.J. (2008). Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40, 1413–1415.

    Article  CAS  PubMed  Google Scholar 

  • Piwecka, M., Glažar, P., Hernandez-Miranda, L.R., Memczak, S., Wolf, S. A., Rybak-Wolf, A., Filipchyk, A., Klironomos, F., Cerda Jara, C.A., Fenske, P., et al. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science 357, eaam8526.

    Article  Google Scholar 

  • Rabani, M., Levin, J.Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M., Gnirke, A., Nusbaum, C., Hacohen, N., Friedman, N., et al. (2011). Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat Biotechnol 29, 436–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabani, M., Raychowdhury, R., Jovanovic, M., Rooney, M., Stumpo, D.J., Pauli, A., Hacohen, N., Schier, A.F., Blackshear, P.J., Friedman, N., et al. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58, 870–885.

    Article  CAS  PubMed  Google Scholar 

  • Salzman, J., Chen, R.E., Olsen, M.N., Wang, P.L., and Brown, P.O. (2013). Cell-type specific features of circular RNA expression. PLoS Genet 9, e1003777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlackow, M., Nojima, T., Gomes, T., Dhir, A., Carmo-Fonseca, M., and Proudfoot, N.J. (2017). Distinctive patterns of transcription and RNA processing for human lincRNAs. Mol Cell 65, 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwalb, B., Michel, M., Zacher, B., Frühauf, K., Demel, C., Tresch, A., Gagneur, J., and Cramer, P. (2016). TT-seq maps the human transient transcriptome. Science 352, 1225–1228.

    Article  CAS  PubMed  Google Scholar 

  • Shah, S., Takei, Y., Zhou, W., Lubeck, E., Yun, J., Eng, C.H.L., Koulena, N., Cronin, C., Karp, C., Liaw, E.J., et al. (2018). Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376.e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibley, C.R., Emmett, W., Blazquez, L., Faro, A., Haberman, N., Briese, M., Trabzuni, D., Ryten, M., Weale, M.E., Hardy, J., et al. (2015). Recursive splicing in long vertebrate genes. Nature 521, 371–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, J., and Padgett, R.A. (2009). Rates of in situ transcription and splicing in large human genes. Nat Struct Mol Biol 16, 1128–1133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L.H., and Bindereif, A. (2015). Exon circularization requires canonical splice signals. Cell Rep 10, 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., Ho, J.X.J., Zhong, Z., Luo, S., Chen, G., and Roca, X. (2016). Noncanonical registers and base pairs in human 5′ splice-site selection. Nucleic Acids Res 44, 3908–3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., and Singer, R.H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz, J.E. (2018). A 360° view of circular RNAs: from biogenesis to functions. WIREs RNA 9, e1478.

    Article  PubMed  Google Scholar 

  • Wissink, E.M., Vihervaara, A., Tippens, N.D., and Lis, J.T. (2019). Nascent RNA analyses: tracking transcription and its regulation. Nat Rev Genet 20, 705–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, L., Duff, M.O., Graveley, B.R., Carmichael, G.G., and Chen, L.L. (2011). Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12, R16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin, Q.F., Chen, L.L., and Yang, L. (2015). Fractionation of non-polyadenylated and ribosomal-free RNAs from mammalian cells. Methods Mol Biol 1206, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • You, X., Vlatkovic, I., Babic, A., Will, T., Epstein, I., Tushev, G., Akbalik, G., Wang, M., Glock, C., Quedenau, C., et al. (2015). Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18, 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, P., Zhang, X.O., Jiang, T., Cai, L., Huang, X., Liu, Q., Li, D., Lu, A., Liu, Y., Xue, W., et al. (2020). Comprehensive identification of alternative back-splicing in human tissue transcriptomes. Nucleic Acids Res 48, 1779–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.O., Dong, R., Zhang, Y., Zhang, J.L., Luo, Z., Zhang, J., Chen, L. L., and Yang, L. (2016a). Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26, 1277–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.O., Fu, Y., Mou, H., Xue, W., and Weng, Z. (2018). The temporal landscape of recursive splicing during Pol II transcription elongation in human cells. PLoS Genet 14, e1007579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X.O., Wang, H.B., Zhang, Y., Lu, X., Chen, L.L., and Yang, L. (2014). Complementary sequence-mediated exon circularization. Cell 159, 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Xue, W., Li, X., Zhang, J., Chen, S., Zhang, J.L., Yang, L., and Chen, L.L. (2016b). The biogenesis of nascent circular RNAs. Cell Rep 15, 611–624.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Gordon G. Carmichael and Ling-Ling Chen for critical reading of this article, and Yang laboratory for discussion. Our work is supported by the National Natural Science Foundation of China (31730111 to L.Y., 31925011 to L.Y., 91940306 to L.Y., 31801073 to W.X.), and the Youth Innovation Promotion Association (to W.X.) from Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Ma, XK. & Yang, L. Fast and furious: insights of back splicing regulation during nascent RNA synthesis. Sci. China Life Sci. 64, 1050–1061 (2021). https://doi.org/10.1007/s11427-020-1881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1881-1

Keywords

Navigation