Skip to main content
Log in

Multiple olfactory pathways contribute to the lure process of Caenorhabditis elegans by pathogenic bacteria

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chemosensation is indispensable for the survival of Caenorhabditis elegans to discriminate food and pathogenic bacteria in their living environment. Food-like odors emitted by the pathogen Bacillus nematocida B16 for trapping its hosts and an olfactory signaling pathway responsible to sense the attractant 2-heptanone were identified in our previous study. Here, we further explore how the worms recognize the attractive molecules indole and 2-ethyl hexanol, which have different chemical properties and modest nematode-luring ability. We show that the chemotaxis toward indole and 2-ethyl hexanol requires the G protein-coupled receptors encoded by str-193 on AWC and str-7 on AWA. In a further genetic screen for downstream effectors in olfactory signaling cascades, the Gα subunit GSA-1, guanylyl cyclase ODR-1 and DAF-11 and the cGMP-gated channel TAX-2/TAX-4 were found to be necessary for indole sensation, whereas the TRPV channels OSM-9/OCR-2 and the PLC pathway activated by GPA-6 are responsible for the detection of 2-ethyl hexanol. Altogether, our current work further clarifies the distinct olfactory signaling pathways through which C. elegans senses different chemicals and is lured by B. nematocida B16, improving our comprehensive understanding of the mechanisms by which bacterial pathogens effectively infect their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Böttger, A., Vothknecht, U., Bolle, C., and Wolf, A. (2018). GPCRs. In Lessons on Caffeine, Cannabis & Co, ed. Springer Nature Switzerland AG, pp. 29–42.

  • Bargmann, C.I. (2006a). Chemosensation in C. elegans. In Wormbook, ed. The C.elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.123.1, http://www.wormbook.org.

  • Bargmann, C.I. (2006b). Comparative chemosensation from receptors to ecology. Nature 444, 295–301.

    Article  CAS  Google Scholar 

  • Bargmann, C.I., Hartwieg, E., and Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527.

    Article  CAS  Google Scholar 

  • Bastiani, C., and Mendel, J. (2006). Heterotrimeric G proteins in C. elegans. In Wormbook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.75.1, http://www.wormbook.org.

  • Bergamasco, C., and Bazzicalupo, P. (2006). Signaling in the chemosensory systems. Cell Mol Life Sci 63, 1510–1522.

    Article  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    Article  CAS  Google Scholar 

  • Chou, J., Troemel, E., Sengupta, P., Colbert, H., Tong, L., Tobin, D., Roayaie, K., Crump, J., Dwyer, N., and Bargmann, C.I. (1996). Olfactory recognition and discrimination in Caenorhabditis elegans. Cold Spring Harb Symp Quantitat Biol 61, 157–164.

    Article  CAS  Google Scholar 

  • Coburn, C.M., and Bargmann, C.I. (1996). A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17, 695–706.

    Article  CAS  Google Scholar 

  • Colbert, H.A., and Bargmann, C.I. (1995). Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron 14, 803–812.

    Article  CAS  Google Scholar 

  • Duc, N.M., Kim, H.R., and Chung, K.Y. (2015). Structural mechanism of G protein activation by G protein-coupled receptor. Eur J Pharmacol 763, 214–222.

    Article  Google Scholar 

  • Ezak, M.J., and Ferkey, D.M. (2011). A functional nuclear localization sequence in the C. elegans TRPV channel OCR-2. PLoS ONE 6, e25047.

    Article  CAS  Google Scholar 

  • Gaillard, I., Rouquier, S., and Giorgi, D. (2004). Olfactory receptors. Cell Mol Life Sci 61, 456–469.

    Article  CAS  Google Scholar 

  • Hardie, R.C. (2007). TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol 578, 9–24.

    Article  CAS  Google Scholar 

  • Hukema, R.K. (2006). Gustatory behaviour in Caenorhabditis elegans. MGC Department of Cell Biology and Genetics. Erasmus MC, Rotterdam, The Netherlands, 176.

  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237.

    Article  CAS  Google Scholar 

  • Kariya, K.I., Bui, Y.K., Gao, X., Sternberg, P.W., and Kataoka, T. (2004). Phospholipase c regulates ovulation in Caenorhabditis elegans. Dev Biol 274, 201–210.

    Article  CAS  Google Scholar 

  • Komatsu, H., Jin, Y.H., L’Etoile, N., Mori, I., Bargmann, C.I., Akaike, N., and Ohshima, Y. (1999). Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells. Brain Res 821, 160–168.

    Article  CAS  Google Scholar 

  • Lans, W.J. (2005). Making sense of G proteins: Genetic analysis of sensory G protein signaling in the nematode C. elegans. Dissertation for Doctoral Degree. (Erasmus MC: University Medical Center Rotterdam).

    Google Scholar 

  • Lee, J.H., Wood, T.K., and Lee, J. (2015). Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 23, 707–718.

    Article  CAS  Google Scholar 

  • L’Etoile, N.D., and Bargmann, C.I. (2000). Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase odr-1. Neuron 25, 575–5

    Article  Google Scholar 

  • Liu, J., Ward, A., Gao, J., Dong, Y., Nishio, N., Inada, H., Kang, L., Yu, Y., Ma, D., Xu, T., et al. (2010). C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nat Neurosci 13, 715–722.

    Article  CAS  Google Scholar 

  • Margie, O., Palmer, C., and Chin-Sang, I. (2013)C. elegans Chemotaxis Assay. JoVE.

  • Mariol, M.C., Walter, L., Bellemin, S., and Gieseler, K. (2013)A Rapid Protocol for Integrating Extrachromosomal Arrays With High Transmission Rate into the C. elegans Genome. JoVE.

  • Niu, Q., Huang, X., Zhang, L., Xu, J., Yang, D., Wei, K., Niu, X., An, Z., Wennstrom Bennett, J., Zou, C., et al. (2010). A trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci USA 107, 16631–16636.

    Article  CAS  Google Scholar 

  • Pierce, K.L., Premont, R.T., and Lefkowitz, R.J. (2002). Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3, 639–650.

    Article  CAS  Google Scholar 

  • Roayaie, K., Crump, J.G., Sagasti, A., and Bargmann, C.I. (1998). The Gα protein odr-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20, 55–67.

    Article  CAS  Google Scholar 

  • Robertson, H.M., and Thomas, J.H. (2006). The putative chemoreceptor families of C. elegans. In Wormbook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.66.1, http://www.wormbook.org.

  • Sengupta, P., Colbert, H.A., and Bargmann, C.I. (1994). The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79, 971–980.

    Article  CAS  Google Scholar 

  • Sengupta, P., Chou, J.H., and Bargmann, C.I. (1996). Odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84, 899–909.

    Article  CAS  Google Scholar 

  • Serizawa, S., Miyamichi, K., and Sakano, H. (2004). One neuron-one receptor rule in the mouse olfactory system. Trends Genet 20, 648–653.

    Article  CAS  Google Scholar 

  • Shidara, H., Hotta, K., and Oka, K. (2017). Compartmentalized cGMP responses of olfactory sensory neurons in Caenorhabditis elegans. J Neurosci 37, 3753–3763.

    Article  CAS  Google Scholar 

  • Spehr, M., and Leinders-Zufall, T. (2005). One neuron-multiple receptors: Increased complexity in olfactory coding? Science’s STKE 285, pe25–pe25.

  • Stewart, M.K., Clark, N.L., Merrihew, G., Galloway, E.M., and Thomas, J. H. (2005). High genetic diversity in the chemoreceptor superfamily of Caenorhabditis elegans. Genetics 169, 1985–1996.

    Article  CAS  Google Scholar 

  • Suh, B.C., and Hille, B. (2008). PIP2 is a necessary cofactor for ion channel function: How and why? Annu Rev Biophys 37, 175–195.

    Article  CAS  Google Scholar 

  • Timmons, L., Court, D.L., and Fire, A. (2001). Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112.

    Article  CAS  Google Scholar 

  • Troemel, E.R., Kimmel, B.E., and Bargmann, C.I. (1997). Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169.

    Article  CAS  Google Scholar 

  • Zhang, C., Yan, J., Chen, Y., Chen, C., Zhang, K., and Huang, X. (2014). The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotech Adv 32, 290–295.

    Article  Google Scholar 

  • Zhang, C., Zhao, N., Chen, Y., Zhang, D., Yan, J., Zou, W., Zhang, K., and Huang, X. (2016). The signaling pathway of Caenorhabditis elegans mediates chemotaxis response to the attractant 2-heptanone in a Trojan horse-like pathogenesis. J Biol Chem 291, 23618–23627.

    Article  CAS  Google Scholar 

  • Zhang, Y., Lu, H., and Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438, 179–184.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chou, J.H., Bradley, J., Bargmann, C.I., and Zinn, K. (1997). The Caenorhabditis elegans seven-transmembrane protein odr-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci USA 94, 12162–12167.

    Article  CAS  Google Scholar 

  • Zhu, M., Xu, X.’., Li, Y., Wang, P., Niu, S., Zhang, K., and Huang, X. (2019). Biosynthesis of the nematode attractant 2-heptanone and its co-evolution between the pathogenic bacterium bacillus nematocida and non-pathogenic bacterium Bacillus subtilis. Front Microbiol 10, 1489.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology of Yunnan Province (2019FA046) and the National Natural Science Foundation of China (32060632 and 31370162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Huang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Chen, Y., Zhao, N. et al. Multiple olfactory pathways contribute to the lure process of Caenorhabditis elegans by pathogenic bacteria. Sci. China Life Sci. 64, 1346–1354 (2021). https://doi.org/10.1007/s11427-020-1842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1842-7

Navigation