Skip to main content
Log in

Artemisinin analogue SM934 protects against lupus-associated antiphospholipid syndrome via activation of Nrf2 and its targets

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Kidney is a major target organ in both antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE). The etiology of antiphospholipid syndrome nephropathy associated lupus nephritis (APSN-LN) is intricate and remains largely unrevealed. We proposed in present work, that generation of antiphospholipid antibodies (aPLs), especially those directed towards the oxidized neoepitopes, are largely linked with the redox status along with disease progression. Moreover, we observed that compromised antioxidative capacity coincided with turbulence of inflammatory cytokine profile in the kidney of male NZW×BXSB F1 mice suffered from APSN-LN. SM934 is an artemisinin derivative that has been proved to have potent immunosuppressive properties. In current study, we elaborated the therapeutic benefits of SM934 in male NZW×BXSB F1 mice, a murine model develops syndrome resembled human APS associated with SLE, for the first time. SM934 treatment comprehensively impeded autoantibodies production, inflammatory cytokine accumulation and excessive oxidative stress in kidney. Among others, we interpreted in present work that both anti-inflammatory and antioxidative effects of SM934 is closely correlated with the enhancement of Nrf2 signaling and expression of its targets. Collectively, our finding confirmed that therapeutic strategy simultaneously exerting antioxidant and anti-inflammatory efficacy provide a novel feasible remedy for treating APSN-LN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, P., Matsuura, E., Batuca, J.R., Ciampa, A., Lopez, L.L., Ferrara, F., Iannaccone, L., and Delgado Alves, J. (2010). High-density lipoprotein inversely relates to its specific autoantibody favoring oxidation in thrombotic primary antiphospholipid syndrome. Lupus 19, 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, S.K. (2016). Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev 2016, 5698931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Córdova, E.J., Velázquez-Cruz, R., Centeno, F., Baca, V., and Orozco, L. (2010). The NRF2 gene variant, -653G/A, is associated with nephritis in childhood-onset systemic lupus erythematosus. Lupus 19, 1237–1242.

    Article  PubMed  Google Scholar 

  • Castellani, P., Balza, E., and Rubartelli, A. (2014). Inflammation, DAMPs, tumor development, and progression: a vicious circle orchestrated by redox signaling. Antioxid Redox Signal 20, 1086–1097.

    Article  CAS  PubMed  Google Scholar 

  • Charakida, M., Besler, C., Batuca, J.R., Sangle, S., Marques, S., Sousa, M., Wang, G., Tousoulis, D., Delgado, A.J., Loukogeorgakis, S.P., et al. (2009). Vascular abnormalities, paraoxonase activity, and dysfunctional HDL in primary antiphospholipid syndrome. JAMA 302, 1210–1217.

    Article  CAS  PubMed  Google Scholar 

  • Dahdah, A., Habir, K., Nandakumar, K.S., Saxena, A., Xu, B., Holmdahl, R., and Malin, S. (2018). Germinal center B cells are essential for collagen-induced arthritis. Arthritis Rheumatol 70, 193–203.

    Article  CAS  PubMed  Google Scholar 

  • DeFranco, A.L. (2016). Germinal centers and autoimmune disease in humans and mice. Immunol Cell Biol 94, 918–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharavi, A.E., Sammaritano, L.R., Wen, J., and Elkon, K.B. (1992). Induction of antiphospholipid autoantibodies by immunization with beta 2 glycoprotein I (apolipoprotein H). J Clin Invest 90, 1105–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, W., Li, J., Chen, Z., Huang, J., Chen, Q., Cai, W., Liu, P., and Huang, H. (2017). Polydatin promotes Nrf2-ARE anti-oxidative pathway through activating CKIP-1 to resist HG-induced up-regulation of FN and ICAM-1 in GMCs and diabetic mice kidneys. Free Radic Biol Med 106, 393–405.

    Article  CAS  PubMed  Google Scholar 

  • Hörkkö, S., Miller, E., Dudl, E., Reaven, P., Curtiss, L.K., Zvaifler, N.J., Terkeltaub, R., Pierangeli, S.S., Branch, D.W., Palinski, W., et al. (1996). Antiphospholipid antibodies are directed against epitopes of oxidized phospholipids. Recognition of cardiolipin by monoclonal antibodies to epitopes of oxidized low density lipoprotein. J Clin Invest 98, 815–825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hahn, B.H., McMahon, M.A., Wilkinson, A., Wallace, W.D., Daikh, D.I., FitzGerald, J.D., Karpouzas, G.A., Merrill, J.T., Wallace, D.J., Yazdany, J., et al. (2012). American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 64, 797–808.

    Article  Google Scholar 

  • Hao, F., Tian, M., Feng, Y., Quan, C., Chen, Y., Chen, S., and Wei, M. (2018). Abrogation of lupus nephritis in somatic hypermutation-deficient MRL-Faslpr/J mice. J Immunol 200, 3905–3912.

    Article  CAS  PubMed  Google Scholar 

  • He, S., Lin, Z., Wu, Y., Bai, B., Yang, X., He, P., Zhu, F., Tang, W., and Zuo, J. (2014). Therapeutic effects of DZ2002, a reversible SAHH inhibitor, on lupus-prone NZB×NZW F1 mice via interference with TLR-mediated APC response. Acta Pharmacol Sin 35, 219–229.

    Article  CAS  PubMed  Google Scholar 

  • Hou, L.F., He, S.J., Li, X., Yang, Y., He, P.L., Zhou, Y., Zhu, F.H., Yang, Y. F., Li, Y., Tang, W., et al. (2011). Oral administration of artemisinin analog SM934 ameliorates lupus syndromes in MRL/lpr mice by inhibiting Th1 and Th17 cell responses. Arthritis Rheum 63, 2445–2455.

    Article  CAS  PubMed  Google Scholar 

  • Hou, L.F., He, S.J., Li, X., Wan, C.P., Yang, Y., Zhang, X.H., He, P.L., Zhou, Y., Zhu, F.H., Yang, Y.F., et al. (2012). SM934 treated lupus-prone NZB×NZW F1 mice by enhancing macrophage interleukin-10 production and suppressing pathogenic T cell development. PLoS ONE 7, e32424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul, A., Gordon, C., Crow, M.K., Touma, Z., Urowitz, M.B., van Vollenhoven, R., Ruiz-Irastorza, G., and Hughes, G. (2016). Systemic lupus erythematosus. Nat Rev Dis Primers 2, 16039.

    Article  PubMed  Google Scholar 

  • Kobayashi, K., Kishi, M., Atsumi, T., Bertolaccini, M.L., Makino, H., Sakairi, N., Yamamoto, I., Yasuda, T., Khamashta, M.A., Hughes, G.R.V., et al. (2003). Circulating oxidized LDL forms complexes with β2-glycoprotein I. J Lipid Res 44, 716–726.

    Article  CAS  PubMed  Google Scholar 

  • Kronbichler, A., and Mayer, G. (2013). Renal involvement in autoimmune connective tissue diseases. BMC Med 11, 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Pedrera, C., Barbarroja, N., Jimenez-Gomez, Y., Collantes-Estevez, E., Aguirre, M.A., and Cuadrado, M.J. (2016). Oxidative stress in the pathogenesis of atherothrombosis associated with anti-phospholipid syndrome and systemic lupus erythematosus: new therapeutic approaches. Rheumatology 55, 2096–2108.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, R.E., and Goldstein, B.J. (2008). Modulating an oxidative-inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. Int J Clin Pract 62, 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Li, T.T., Zhang, X.H., Hou, L.F., Yang, X.Q., Zhu, F.H., Tang, W., and Zuo, J.P. (2013). Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS ONE 8, e74108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y. (2012). Qinghaosu (artemisinin): chemistry and pharmacology. Acta Pharmacol Sin 33, 1141–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Z.M., Yang, X.Q., Zhu, F.H., He, S.J., Tang, W., and Zuo, J.P. (2016). Artemisinin analogue SM934 attenuate collagen-induced arthritis by suppressing T follicular helper cells and T helper 17 cells. Sci Rep 6, 38115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Ward, K., Xavier, C., Jann, J., Clark, A.F., Pang, I.H., and Wu, H. (2016). The novel triterpenoid RTA 408 protects human retinal pigment epithelial cells against H2O2-induced cell injury via NF-E2-related factor 2 (Nrf2) activation. Redox Biol 8, 98–109.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., Wang, B., Cui, N., and Zhang, Y. (2018). Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROS-dependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med Rep 17, 6639–6646.

    CAS  PubMed  Google Scholar 

  • Luo, J.F., Shen, X.Y., Lio, C.K., Dai, Y., Cheng, C.S., Liu, J.X., Yao, Y.D., Yu, Y., Xie, Y., Luo, P., et al. (2018). Activation of Nrf2/HO-1 pathway by nardochinoid C inhibits inflammation and oxidative stress in lipopolysaccharide-stimulated macrophages. Front Pharmacol 9, 911.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Flores, J., Serrano, M., Morales, J., and Serrano, A. (2016). Antiphospholipid syndrome and kidney involvement: new insights. Antibodies 5, 17.

    Article  PubMed Central  CAS  Google Scholar 

  • Misasi, R., Capozzi, A., Longo, A., Recalchi, S., Lococo, E., Alessandri, C., Conti, F., Valesini, G., and Sorice, M. (2015). “New” antigenic targets and methodological approaches for refining laboratory diagnosis of antiphospholipid syndrome. J Immunol Res 2015, 1–13.

    Article  Google Scholar 

  • Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., and Malik, A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20, 1126–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Sanchez, C., Ruiz-Limon, P., Aguirre, M.A., Bertolaccini, M.L., Khamashta, M.A., Rodriguez-Ariza, A., Segui, P., Collantes-Estevez, E., Barbarroja, N., Khraiwesh, H., et al. (2012). Mitochondrial dysfunction in antiphospholipid syndrome: implications in the pathogenesis of the disease and effects of coenzyme Q10 treatment. Blood 119, 5859–5870.

    Article  CAS  PubMed  Google Scholar 

  • Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxid Med Cell Long 2017, 1–13.

    Google Scholar 

  • Pons-Estel, G.J., Andreoli, L., Scanzi, F., Cervera, R., and Tincani, A. (2017). The antiphospholipid syndrome in patients with systemic lupus erythematosus. J Autoimmun 76, 10–20.

    Article  CAS  PubMed  Google Scholar 

  • Ratliff, B.B., Abdulmahdi, W., Pawar, R., and Wolin, M.S. (2016). Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 25, 119–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P., and Khamashta, M. A. (2010). Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 69, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Savelli, S.L., Roubey, R.A.S., Kitzmiller, K.J., Zhou, D., Nagaraja, H.N., Mulvihill, E., Barbar-Smiley, F., Ardoin, S.P., Wu, Y.L., and Yu, C.Y. (2019). Opposite profiles of complement in antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE) among patients with antiphospholipid antibodies (aPL). Front Immunol 10, 885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber, K., Sciascia, S., de Groot, P.G., Devreese, K., Jacobsen, S., Ruiz-Irastorza, G., Salmon, J.E., Shoenfeld, Y., Shovman, O., and Hunt, B.J. (2018). Antiphospholipid syndrome. Nat Rev Dis Primers 4, 17103.

    Article  PubMed  Google Scholar 

  • Shah, D., Mahajan, N., Sah, S., Nath, S.K., and Paudyal, B. (2014). Oxidative stress and its biomarkers in systemic lupus erythematosus. J Biomed Sci 21, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smallwood, M.J., Nissim, A., Knight, A.R., Whiteman, M., Haigh, R., and Winyard, P.G. (2018). Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 125, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Turrent-Carriles, A., Herrera-Félix, J.P., and Amigo, M.C. (2018). Renal involvement in antiphospholipid syndrome. Front Immunol 9, 1008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vomund, S., Schäfer, A., Parnham, M., Brüne, B., and von Knethen, A. (2017). Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18, 2772.

    Article  PubMed Central  CAS  Google Scholar 

  • Wang, J., Xu, C., Wong, Y.K., Li, Y., Liao, F., Jiang, T., and Tu, Y. (2019). Artemisinin, the magic drug discovered from traditional chinese medicine. Engineering 5, 32–39.

    Article  CAS  Google Scholar 

  • Wang, Y., Xiao, C.Y., Lin, H.Q., Hu, J.S., Ip, T.M., and Chi-Cheong Wan, D. (2020). Development of an enzyme-linked immunosorbent assay for Keap1-Nrf2 interaction inhibitors identification. Redox Biol 34, 101573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis, R., Smikle, M., DeCeulaer, K., Romay-Penabad, Z., Papalardo, E., Jajoria, P., Harper, B., Murthy, V., Petri, M., and Gonzalez, E.B. (2017). Clinical associations of proinflammatory cytokines, oxidative biomarkers and vitamin D levels in systemic lupus erythematosus. Lupus 26, 1517–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., He, S., Bai, B., Zhang, L., Xue, L., Lin, Z., Yang, X., Zhu, F., He, P., Tang, W., et al. (2016). Therapeutic effects of the artemisinin analog SM934 on lupus-prone MRL/lpr mice via inhibition of TLR-triggered B-cell activation and plasma cell formation. Cell Mol Immunol 13, 379–390.

    Article  CAS  PubMed  Google Scholar 

  • Yung, S., Yap, D.Y., and Chan, T.M. (2017). Recent advances in the understanding of renal inflammation and fibrosis in lupus nephritis. F1000Research 6, 874.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81903882 and 81871240), the National Science and Technology Major Project “New Drug Creation and Manufacturing Program” (2018ZX09711002-014-001), the Personalized Medicines—“Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12020107 and XDA12020369).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shijun He or Jianping Zuo.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Liu, Y., Chen, L. et al. Artemisinin analogue SM934 protects against lupus-associated antiphospholipid syndrome via activation of Nrf2 and its targets. Sci. China Life Sci. 64, 1702–1719 (2021). https://doi.org/10.1007/s11427-020-1840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1840-1

Navigation