Skip to main content
Log in

Modulation of evening complex activity enables north-to-south adaptation of soybean

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Soybean, a typical short-day crop, is sensitive to photoperiod, which is a major limiting factor defining its north-to-south cultivation range. The long-juvenile (LJ) trait is controlled primarily by the J locus which has been used for decades by soybean breeders to delay flowering and improve grain yield in tropical regions. The J gene encodes an ortholog of the Arabidopsis Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). To identify modifiers of J, we conducted a forward genetic screen and isolated a mutant (eoj57) that in combination with j has longer flowering delay compared with j single mutant plants. Map-based cloning and genome re-sequencing identified eoj57 (designated as GmLUX2) as an ortholog of the Arabidopsis EC component LUX ARRHYTHMO (LUX). To validate that GmLUX2 is a modifier of J, we used trans-complementation and identified a natural variant allele with a similar phenotype. We also show that GmLUX2 physically interacts with GmELF3a/b and binds DNA, whereas the mutant and natural variant are attenuated in both activities. Transcriptome analysis shows that the GmLUX2-GmELF3a complex co-regulates the expression of several circadian clock-associated genes and directly represses E1 expression. These results provide mechanistic insight into how GmLUX2-GmELF3 controls flowering time via synergistic regulation of gene expression. These novel insights expand our understanding of the regulation of the EC complex, and facilitate the development of soybean varieties adapted for growth at lower latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrés, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13, 627–639.

    Article  PubMed  CAS  Google Scholar 

  • Boden, S.A., Weiss, D., Ross, J.J., Davies, N.W., Trevaskis, B., Chandler, P. M., and Swain, S.M. (2014). EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERING LOCUS T expression. Plant Cell 26, 1557–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campoli, C., Pankin, A., Drosse, B., Casao, C.M., Davis, S.J., and von Korff, M. (2013). HvLUX1 is a candidate gene underlying the early maturity 10 locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytol 199, 1045–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, D., Li, Y., Lu, S., Wang, J., Nan, H., Li, X., Shi, D., Fang, C., Zhai, H., Yuan, X., et al. (2015). GmCOL1a and GmCOL1b function as flowering repressors in soybean under long-day conditions. Plant Cell Physiol 56, 2409–2422.

    Article  CAS  PubMed  Google Scholar 

  • Carpentieri-Pípolo, V., Almeida, L.A., and Kiihl, R.A.S. (2002). Inheritance of a long juvenile period under short-day conditions in soybean. Genet Mol Biol 25, 463–469.

    Article  Google Scholar 

  • Cheng, Q., Gan, Z., Wang, Y., Lu, S., Hou, Z., Li, H., Xiang, H., Liu, B., Kong, F., and Dong, L. (2020). The soybean gene J contributes to salt stress tolerance by up-regulating salt-responsive genes. Front Plant Sci 11, 272.

    Google Scholar 

  • Cheng, Q., Dong, L., Su, T., Li, T., Gan, Z., Nan, H., Lu, S., Fang, C., Kong, L., Li, H., et al. (2019). CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biol 19, 562.

    Google Scholar 

  • Chow, B.Y., Helfer, A., Nusinow, D.A., and Kay, S.A. (2012). ELF3 recruitment to the PRR9 promoter requires other Evening Complex members in the Arabidopsis circadian clock. Plant Signal Behav 7, 170–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, J., You, C., Zhu, E., Huang, Q., Ma, H., and Chang, F. (2016). Feedback regulation of DYT1 by interactions with downstream bHLH factors promotes DYT1 nuclear localization and anther development. Plant Cell 28, 1078–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destro, D., Carpentieri-Pípolo, V., Kiihl, R.A.S., and Almeida, L.A. (2001). Photoperiodism and genetic control of the long juvenile period in soybean: a review. Crop Breed Appl Biot 1, 72–92.

    Article  Google Scholar 

  • Doyle, M.R., Davis, S.J., Bastow, R.M., McWatters, H.G., Kozma-Bognár, L., Nagy, F., Millar, A.J., and Amasino, R.M. (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419, 74–77.

    Article  CAS  PubMed  Google Scholar 

  • Fang, C., Ma, Y., Wu, S., Liu, Z., Wang, Z., Yang, R., Hu, G., Zhou, Z., Yu, H., Zhang, M., et al. (2017). Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18, 161.

    Google Scholar 

  • Faure, S., Turner, A.S., Gruszka, D., Christodoulou, V., Davis, S.J., von Korff, M., and Laurie, D.A. (2012). Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci USA 109, 8328–8333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Z. (2020). Flowering phenology as a core domestication trait in soybean. J Integr Plant Biol 62, 546–549.

    Article  PubMed  Google Scholar 

  • Hazen, S.P., Schultz, T.F., Pruneda-Paz, J.L., Borevitz, J.O., Ecker, J.R., and Kay, S.A. (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102, 10387–10392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfer, A., Nusinow, D.A., Chow, B.Y., Gehrke, A.R., Bulyk, M.L., and Kay, S.A. (2011). LUX ARRHYTHMO encodes a nighttime repressor of circadian gene expression in the Arabidopsis core clock. Curr Biol 21, 126–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., and Laing, W.A. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hicks, K.A., Albertson, T.M., and Wagner, D.R. (2001). EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13, 1281–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P.Y., and Harmer, S.L. (2014). Wheels within wheels: the plant circadian system. Trends Plant Sci 19, 240–249.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., and Nusinow, D.A. (2016). Into the Evening: complex interactions in the Arabidopsis circadian clock. Trends Genets 32, 674–686.

    Article  CAS  Google Scholar 

  • Huang, Y.A., Deng, X.J., Wan, H.B., Wang, p., Fang, X.L., Zhang, J. and Yang, C.Y. (2016). Mutagenesis and SSR markers of soybean cultivar Huaxia 3. Chin J Oil Crop Sci 38, 159–166.

    Google Scholar 

  • Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J.E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10, 845–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K., Mas, P., and Seo, P.J. (2019). The EC-HDA9 complex rhythmically regulates histone acetylation at the TOC1 promoter in Arabidopsis. Commun Biol 2, 143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leuzinger, K., Dent, M., Hurtado, J., Stahnke, J., Lai, H., Zhou, X., and Chen, Q. (2013). Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. J Vis Exp 77, 50521.

    Google Scholar 

  • Li, C., Li, Y.H., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., Liu, J., et al. (2020). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant 13, 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M.W., Liu, W., Lam, H.M., and Gendron, J.M. (2019). Characterization of two growth period QTLs reveals modification of PRR3 genes during soybean domestication. Plant Cell Physiol 60, 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Dong, Y., Wu, H., Hu, B., Zhai, H., Yang, J., and Xia, Z. (2019). Positional cloning of the flowering time QTL qFT12-1 reveals the link between the clock related PRR homolog with photoperiodic response in soybeans. Front Plant Sci 10, 1303.

    Google Scholar 

  • Liew, L.C., Singh, M.B., and Bhalla, P.L. (2017). A novel role of the soybean clock gene LUX ARRHYTHMO in male reproductive development. Sci Rep 7, 10605.

    Google Scholar 

  • Liew, L.C., Hecht, V., Sussmilch, F.C., and Weller, J.L. (2014). The pea photoperiod response gene STERILE NODES is an ortholog of LUX ARRHYTHMO. Plant Physiol 165, 648–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liew, L.C., Hecht, V., Laurie, R.E., Knowles, C.L., Vander Schoor, J.K., Macknight, R.C., and Weller, J.L. (2009). DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Plant Cell 21, 3198–3211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X.L., Covington, M.F., Fankhauser, C., Chory, J., and Wagner, D.R. (2001). ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 1293–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lu, Q., Zhao, L., Li, D., Hao, D., Zhan, Y., and Li, W. (2014). A GMRAV ortholog is involved in photoperiod and sucrose control of flowering time in soybean. PLoS ONE 9, e89145.

    Google Scholar 

  • Lu, S., Zhao, X., Hu, Y., Liu, S., Nan, H., Li, X., Fang, C., Cao, D., Shi, X., Kong, L., et al. (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49, 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., et al. (2020). Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52, 428–436.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S.X., Webb, C.J., Knowles, S.M., Kim, S.H.J., Wang, Z., and Tobin, E. M. (2012). CCA1 and ELF3 interact in the control of hypocotyl length and flowering time in Arabidopsis. Plant Physiol 158, 1079–1088.

    Article  CAS  PubMed  Google Scholar 

  • Marcolino-Gomes, J., Nakayama, T.J., Molinari, H.B.C., Basso, M.F., Henning, L.M.M., Fuganti-Pagliarini, R., Harmon, F.G., and Nepomuceno, A.L. (2017). Functional characterization of a putative glycine max ELF4 in transgenic Arabidopsis and its role during flowering control. Front Plant Sci 8, 618.

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno, N., Nitta, M., Sato, K., and Nasuda, S. (2012). Awheat homologue of PHYTOCLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat. Genes Genet Syst 87, 357–367.

    Article  CAS  PubMed  Google Scholar 

  • Murray, M.G., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8, 4321–4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumaier, N., and James, A. (1993). Exploiting the long-juvenile trait to improve adaptation of soybeans to the tropics. Food Legume Newsl 18, 12–14.

    Google Scholar 

  • Niu, N., Liang, W., Yang, X., Jin, W., Wilson, Z.A., Hu, J., and Zhang, D. (2013). EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4, 1445.

    Article  PubMed  CAS  Google Scholar 

  • Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farré, E.M., and Kay, S.A. (2011). The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olhoft, P., and Somers, D. (2001). L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20, 706–711.

    Article  CAS  Google Scholar 

  • Ray, J.D., Hinson, K., Mankono, J.E.B., and Malo, M.F. (1995). Genetic control of a long-juvenile trait in soybean. Crop Sci 35, 1001–1006.

    Article  Google Scholar 

  • Ridge, S., Deokar, A., Lee, R., Daba, K., Macknight, R.C., Weller, J.L., and Tar'an, B. (2017). The Chickpea Early Flowering 1 (Efl1) locus is an ortholog of Arabidopsis ELF3. Plant Physiol 175, 802–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubenach, A.J.S., Hecht, V., Vander Schoor, J.K., Liew, L.C., Aubert, G., Burstin, J., and Weller, J.L. (2017). EARLY FLOWERING3 redundancy fine-tunes photoperiod sensitivity. Plant Physiol 173, 2253–2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, H., Ogiso-Tanaka, E., Okumoto, Y., Yoshitake, Y., Izumi, H., Yokoo, T., Matsubara, K., Hori, K., Yano, M., Inoue, H., et al. (2012). Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short-and long-day conditions. Plant Cell Physiol 53, 717–728.

    Article  CAS  PubMed  Google Scholar 

  • Sakuraba, Y., Bülbül, S., Piao, W., Choi, G., and Paek, N.C. (2017). ArabidopsisEARLY FLOWERING 3 increases salt tolerance by suppressing salt stress response pathways. Plant J 92, 1106–1120.

    Article  CAS  PubMed  Google Scholar 

  • Silva, C.S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J.H., López-Vidriero, I., Franco-Zorrilla, J.M., Panigrahi, K.C.S., Nanao, M. H., et al. (2020). Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci USA 117, 6901–6909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair, T.R., and Hinson, K. (1992). Soybean flowering in response to the long-juvenile trait. Crop Sci 32, 1242–1248.

    Article  Google Scholar 

  • Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., Li, J., Jia, H., Yuan, S., Chen, L., et al. (2020). Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J 18, 1869–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Li, H., Li, Y., Li, Z., Qi, J., Lin, T., Yang, X., Zhang, Z., and Huang, S. (2020). FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiol 182, 908–918.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yu, K., Poysa, V., Shi, C., and Zhou, Y. (2012). Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium. Mol Biol Rep 39, 1585–1594.

    Article  CAS  PubMed  Google Scholar 

  • Weller, J.L., Liew, L.C., Hecht, V.F.G., Rajandran, V., Laurie, R.E., Ridge, S., Wenden, B., Vander Schoor, J.K., Jaminon, O., Blassiau, C., et al. (2012). A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci USA 109, 21158–21163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, J., Li, C., Xu, S., Xing, L., Xu, Y., and Chong, K. (2015). AtJAC1 regulates nuclear accumulation of GRP7, influencing RNA processing of FLC antisense transcripts and flowering time in Arabidopsis. Plant Physiol 169, 2102–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y., Peng, Q., Chen, G.X., Li, X.H., and Wu, C.Y. (2013). OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Mol Plant 6, 202–215.

    Article  CAS  PubMed  Google Scholar 

  • Yao, L., Cheng, X., Gu, Z., Huang, W., Li, S., Wang, L., Wang, Y.F., Xu, P., Ma, H., and Ge, X. (2018). The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. Plant Cell 30, 1258–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J.W., Rubio, V., Lee, N.Y., Bai, S., Lee, S.Y., Kim, S.S., Liu, L., Zhang, Y., Irigoyen, M.L., Sullivan, J.A., et al. (2008). COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32, 617–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Y., Liu, N., Jiang, B., Li, M., Wang, H., Jiang, Z., Pan, H., Xia, Q., Ma, Q., Han, T., et al. (2017). A single nucleotide deletion in J encoding GmELF3 confers long juvenility and is associated with adaption of tropic soybean. Mol Plant 10, 656–658.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Gu, Z., Wu, Q., Yang, L., Liu, C., Ma, H., Xia, Y., and Ge, X. (2015). Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl) ation. Sci Rep 5, 15892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S.R., Wang, H., Wang, Z., Ren, Y., Niu, L., Liu, J., and Liu, B. (2017). Photoperiodism dynamics during the domestication and improvement of soybean. Sci China Life Sci 60, 1416–1427.

    Article  PubMed  Google Scholar 

  • Zhang, X., Henriques, R., Lin, S.S., Niu, Q.W., and Chua, N.H. (2006). Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1, 641–646.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, Y., Wei, H., Li, N., Tian, W., Chong, K., and Wang, L. (2018). Circadian Evening Complex represses jasmonate-induced leaf senescence in Arabidopsis. Mol Plant 11, 326–337.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Huang, X., Ouyang, X., Chen, W., Du, A., Zhu, L., Wang, S., Deng, X.W., and Li, S. (2012). OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE 7, e43705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Gregory P. Copenhaver from University of North Carolina at Chapel Hill for critical reading of the manuscript, Dr. Jianhua Gan from the School of Life Sciences at Fudan University for assistance with the LUX2 structure modelling, Dr. Zhixi Tian from Institute of Genetics and Developmental Biology, Chinese Academy of Sciences for detecting the GmLUX2 variation among re-sequenced soybean genotypes. This research was supported by grants from the National Key Research and Development Program of China (2016YFD0101900) and National Natural Science Foundation of China (31271745) to C.Y., the National Key Project for Research on Transgenic Biology in China (2014ZX0800921B) to Y.W., and the State Key Laboratory of Genetic Engineering and Fudan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cunyi Yang or Yingxiang Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Han, Y., Liu, M. et al. Modulation of evening complex activity enables north-to-south adaptation of soybean. Sci. China Life Sci. 64, 179–195 (2021). https://doi.org/10.1007/s11427-020-1832-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1832-2

Keywords

Navigation