Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Science China Life Sciences
  3. Article
Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs

07 December 2020

Shuai He, Lin-He Wang, … Zhiyong Guo

Single-Cell Transcriptomic Analysis of Cardiac Progenitor Differentiation

19 May 2020

Haiqing Xiong & Aibin He

Transcriptional Profiling of Single Cardiomyocytes in Health and Disease

09 July 2020

Bingying Zhou & Li Wang

Dissecting lung development and fibrosis at single-cell resolution

24 May 2019

Donna L. Farber & Peter A. Sims

Characterization of the heterogeneity of endothelial cells in bleomycin-induced lung fibrosis using single-cell RNA sequencing

24 May 2021

Xiucheng Liu, Xichun Qin, … Hao Zhang

Single-cell RNA-seq highlights heterogeneity in human primary Wharton’s jelly mesenchymal stem/stromal cells cultured in vitro

06 April 2020

Changbin Sun, Lei Wang, … Xi Zhang

Single-cell RNA sequencing of cultured human endometrial CD140b+CD146+ perivascular cells highlights the importance of in vivo microenvironment

29 May 2021

Dandan Cao, Rachel W. S. Chan, … William S. B. Yeung

DevKidCC allows for robust classification and direct comparisons of kidney organoid datasets

22 February 2022

Sean B. Wilson, Sara E. Howden, … Melissa H. Little

Kidney and organoid single-cell transcriptomics: the end of the beginning

04 January 2019

Parker C. Wilson & Benjamin D. Humphreys

Download PDF
  • Research Paper
  • Published: 03 November 2020

Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity

  • Ya-Na Guan1 na1,
  • Yue Li2 na1,
  • Moom Roosan2 &
  • …
  • Qing Jing1 

Science China Life Sciences volume 64, pages 1077–1086 (2021)Cite this article

  • 729 Accesses

  • 2 Citations

  • Metrics details

Abstract

Mural cells (MCs) wrap around the endothelium, and participate in the development and homeostasis of vasculature. MCs have been reported as heterogeneous population morphologically and functionally. However, the transcriptional heterogeneity of MCs was rarely studied. In this study, we illustrated the transcriptional heterogeneity of MCs with different perspectives by using publicly available single-cell dataset GSE109774. Specifically, MCs are transcriptionally different from other cell types, and ligand-receptor interactions of different cells with MCs vary. Re-clustering of MCs identified five distinct subclusters. The heterogeneity of MCs in tissues was reflected by MC coverage, various distribution of MC subclusters, and ligand-receptor interactions of MCs and parenchymal cells. The transcriptomic diversity of MCs revealed in this article will help facilitate further research into MCs.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Aird, W.C. (2007a). Phenotypic heterogeneity of the endothelium. Circ Res 100, 158–173.

    CAS  PubMed  Google Scholar 

  • Aird, W.C. (2007b). Phenotypic heterogeneity of the endothelium. Circ Res 100, 174–190.

    CAS  PubMed  Google Scholar 

  • Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ Res 97, 512–523.

    CAS  PubMed  Google Scholar 

  • Armulik, A., Genové, G., and Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21, 193–215.

    CAS  PubMed  Google Scholar 

  • Armulik, A., Genové, G., Mäe, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., Strittmatter, K., et al. (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561.

    CAS  PubMed  Google Scholar 

  • Arnold, T.D., Niaudet, C., Pang, M.F., Siegenthaler, J., Gaengel, K., Jung, B., Ferrero, G.M., Mukouyama, Y., Fuxe, J., Akhurst, R., et al. (2014). Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking αVβ8-TGFβ signaling in the brain. Development 141, 4489–4499.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Augustin, H.G., and Koh, G.Y. (2017). Organotypic vasculature: From descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379.

    PubMed  Google Scholar 

  • Bondjers, C., He, L., Takemoto, M., Norlin, J., Asker, N., Hellström, M., Lindahl, P., Betsholtz, C., Bondjers, C., He, L., et al. (2006). Microarray analysis of blood microvessels from PDGF-B and PDGF-Rβ mutant mice identifies novel markers for brain pericytes. FASEB J 20, 1703–1705.

    CAS  PubMed  Google Scholar 

  • Bondjers, C., Kalén, M., Hellström, M., Scheidl, S.J., Abramsson, A., Renner, O., Lindahl, P., Cho, H., Kehrl, J., and Betsholtz, C. (2003). Transcription profiling of platelet-derived growth factor-B-deficient mouse embryos identifies RGS5 as a novel marker for pericytes and vascular smooth muscle cells. Am J Pathol 162, 721–729.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borysova, L., Wray, S., Eisner, D.A., and Burdyga, T. (2013). How calcium signals in myocytes and pericytes are integrated across in situ microvascular networks and control microvascular tone. Cell Calcium 54, 163–174.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boucher, J.M., Harrington, A., Rostama, B., Lindner, V., and Liaw, L. (2013). A receptor-specific function for Notch2 in mediating vascular smooth muscle cell growth arrest through cyclin-dependent kinase inhibitor 1B. Circ Res 113, 975–985.

    CAS  PubMed  Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Luo, Y., Hui, H., Cai, T., Huang, H., Yang, F., Feng, J., Zhang, J., and Yan, X. (2017). CD146 coordinates brain endothelial cell-pericyte communication for blood-brain barrier development. Proc Natl Acad Sci USA 114, E7622–E7631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Li, X., Chen, M., Feng, Y., and Xiong, C. (2020). The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 116, 1097–1100.

    CAS  PubMed  Google Scholar 

  • Chen, W.C.W., Baily, J.E., Corselli, M., Díaz, M.E., Sun, B., Xiang, G., Gray, G.A., Huard, J., and Péault, B. (2015). Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells 33, 557–573.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, J., Lin, J.H., Brenot, A., Kim, J., Provot, S., and Werb, Z. (2013). GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nat Cell Biol 15, 201–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian, S., Winkler, R., Helfrich, I., Boos, A.M., Besemfelder, E., Schadendorf, D., and Augustin, H.G. (2008). Endosialin (Tem1) is a marker of tumor-associated myofibroblasts and tumor vessel-associated mural cells. Am J Pathol 172, 486–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke, V.G., LeBleu, V.S., Keskin, D., Khan, Z., O’Connell, J.T., Teng, Y., Duncan, M.B., Xie, L., Maeda, G., Vong, S., et al. (2012). Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21, 66–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daneman, R., Zhou, L., Kebede, A.A., and Barres, B.A. (2010). Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dermietzel, R., and Krause, D. (1991). Molecular anatomy of the blood-brain-barrier as defined by immunocytochemistry. Int Rev Cytol 127, 57–109.

    CAS  PubMed  Google Scholar 

  • Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., Martin-Vasallo, P., and Diaz-Flores, L., Jr. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24, 909–969.

    CAS  PubMed  Google Scholar 

  • Fantin, A., Herzog, B., Mahmoud, M., Yamaji, M., Plein, A., Denti, L., Ruhrberg, C., and Zachary, I. (2014). Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141, 556–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, Q., Zhang, J., Wang, X., Liu, Y., He, R., Liu, X., Wang, F., Feng, J., Yang, D., Wang, Z., et al. (2017). The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nat Commun 8, 15279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt, H., and Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314, 15–23.

    PubMed  Google Scholar 

  • Guimarães-Camboa, N., Cattaneo, P., Sun, Y., Moore-Morris, T., Gu, Y., Dalton, N.D., Rockenstein, E., Masliah, E., Peterson, K.L., Stallcup, W. B., et al. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5.

    PubMed  PubMed Central  Google Scholar 

  • Hartmann, D.A., Underly, R.G., Grant, R.I., Watson, A.N., Lindner, V., and Shih, A.Y. (2015). Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics 2, 041402.

    PubMed  PubMed Central  Google Scholar 

  • He, L., Vanlandewijck, M., Raschperger, E., Andaloussi Mäe, M., Jung, B., Lebouvier, T., Ando, K., Hofmann, J., Keller, A., and Betsholtz, C. (2016). Analysis of the brain mural cell transcriptome. Sci Rep 6, 35108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinkel, R., Howe, A., Renner, S., Ng, J., Lee, S., Klett, K., Kaczmarek, V., Moretti, A., Laugwitz, K.L., Skroblin, P., et al. (2017). Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69, 131–143.

    CAS  PubMed  Google Scholar 

  • Huang, F.J., You, W.K., Bonaldo, P., Seyfried, T.N., Pasquale, E.B., and Stallcup, W.B. (2010). Pericyte deficiencies lead to aberrant tumor vascularizaton in the brain of the NG2 null mouse. Dev Biol 344, 1035–1046.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, J., Yang, K., Kim, H.J., Lee, Y.J., Kim, M., Choi, Y.H., and Kang, J.L. (2019). RhoA-dependent HGF and c-Met mediate Gas6-induced inhibition of epithelial-mesenchymal transition, migration, and invasion of lung alveolar epithelial cells. Biomolecules 9, 565.

    CAS  PubMed Central  Google Scholar 

  • Kalucka, J., de Rooij, L.P.M.H., Goveia, J., Rohlenova, K., Dumas, S.J., Meta, E., Conchinha, N.V., Taverna, F., Teuwen, L.A., Veys, K., et al. (2020). Single-cell transcriptome atlas of murine endothelial cells. Cell 180, 764–779.e20.

    CAS  PubMed  Google Scholar 

  • Kato, K., Diéguez-Hurtado, R., Park, D.Y., Hong, S.P., Kato-Azuma, S., Adams, S., Stehling, M., Trappmann, B., Wrana, J.L., Koh, G.Y., et al. (2018). Pulmonary pericytes regulate lung morphogenesis. Nat Commun 9, 2448.

    PubMed  PubMed Central  Google Scholar 

  • Keller, A., Westenberger, A., Sobrido, M.J., García-Murias, M., Domingo, A., Sears, R.L., Lemos, R.R., Ordoñez-Ugalde, A., Nicolas, G., da Cunha, J.E.G., et al. (2013). Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet 45, 1077–1082.

    CAS  PubMed  Google Scholar 

  • Kovac, A., Erickson, M.A., and Banks, W.A. (2011). Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflamm 8, 139.

    CAS  Google Scholar 

  • Kurz, H., Fehr, J., Nitschke, R., and Burkhardt, H. (2008). Pericytes in the mature chorioallantoic membrane capillary plexus contain desmin and α-smooth muscle actin: relevance for non-sprouting angiogenesis. Histochem Cell Biol 130, 1027–1040.

    CAS  PubMed  Google Scholar 

  • MacDonald, T.J., Brown, K.M., LaFleur, B., Peterson, K., Lawlor, C., Chen, Y., Packer, R.J., Cogen, P., and Stephan, D.A. (2001). Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29, 143–152.

    CAS  PubMed  Google Scholar 

  • Mathiisen, T.M., Lehre, K.P., Danbolt, N.C., and Ottersen, O.P. (2010). The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58, 1094–1103.

    PubMed  Google Scholar 

  • Matsuda, S., Matsuda, Y., and D’Adamio, L. (2009). CD74 interacts with APP and suppresses the production of Aβ. Mol Neurodegener 4, 41.

    PubMed  PubMed Central  Google Scholar 

  • Nees, S., Juchem, G., Eberhorn, N., Thallmair, M., Förch, S., Knott, M., Senftl, A., Fischlein, T., Reichart, B., and Weiss, D.R. (2012). Wall structures of myocardial precapillary arterioles and postcapillary venules reexamined and reconstructed in vitro for studies on barrier functions. Am J Physiol-Heart Circulat Physiol 302, H51–H68.

    CAS  Google Scholar 

  • Nehls, V., Denzer, K., and Drenckhahn, D. (1992). Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270, 469–474.

    CAS  PubMed  Google Scholar 

  • Nolan, D.J., Ginsberg, M., Israely, E., Palikuqi, B., Poulos, M.G., James, D., Ding, B.S., Schachterle, W., Liu, Y., Rosenwaks, Z., et al. (2013). Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26, 204–219.

    CAS  PubMed  Google Scholar 

  • O’Keeffe, M.B., Devlin, A.H., Burns, A.J., Gardiner, T.A., Logan, I.D., Hirst, D.G., and McKeown, S.R. (2008). Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. Oncol Res 17, 93–101.

    PubMed  Google Scholar 

  • Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E., and Stallcup, W.B. (2001). NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222, 218–227.

    CAS  PubMed  Google Scholar 

  • Paik, D.T., Tian, L., Lee, J., Sayed, N., Chen, I.Y., Rhee, S., Rhee, J.W., Kim, Y., Wirka, R.C., Buikema, J.W., et al. (2018). Large-scale single-cell RNA-Seq reveals molecular signatures of heterogeneous populations of human induced pluripotent stem cell-derived endothelial cells. Circ Res 123, 443–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pantouris, G., Ho, J., Shah, D., Syed, M.A., Leng, L., Bhandari, V., Bucala, R., Batista, V.S., Loria, J.P., and Lolis, E.J. (2018). Nanosecond dynamics regulate the MIF-induced activity of CD74. Angew Chem Int Ed 57, 7116–7119.

    CAS  Google Scholar 

  • Peppiatt, C.M., Howarth, C., Mobbs, P., and Attwell, D. (2006). Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Potente, M., and Mäkinen, T. (2017). Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 18, 477–494.

    CAS  PubMed  Google Scholar 

  • Ramachandran, P., Dobie, R., Wilson-Kanamori, J.R., Dora, E.F., Henderson, B.E.P., Luu, N.T., Portman, J.R., Matchett, K.P., Brice, M., Marwick, J.A., et al. (2019). Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rensen, S.S.M., Doevendans, P.A.F.M., and van Eys, G.J.J.M. (2007). Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 15, 100–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard, N., Tu, L., Le Hiress, M., Huertas, A., Phan, C., Thuillet, R., Sattler, C., Fadel, E., Seferian, A., Montani, D., et al. (2014). Increased pericyte coverage mediated by endothelial derived Fgf-2 and Il-6 is a source of smooth muscle-like cells. Am J Resp Crit Care 189, A4823.

    Google Scholar 

  • Saban, M.R., Backer, J.M., Backer, M.V., Maier, J., Fowler, B., Davis, C. A., Simpson, C., Wu, X.R., Birder, L., Freeman, M.R., et al. (2008). VEGF receptors and neuropilins are expressed in the urothelial and neuronal cells in normal mouse urinary bladder and are upregulated in inflammation. Am J Physiol-Renal Physiol 295, F60–F72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schaum, N., Karkanias, J., Neff, N.F., May, A.P., Quake, S.R., Wyss-Coray, T., Darmanis, S., Batson, J., and Botvinnik, O. (2018). Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372.

    PubMed Central  Google Scholar 

  • Schlingemann, R.O., Oosterwijk, E., Wesseling, P., Rietveld, F.J.R., and Ruiter, D.J. (1996). Aminopeptidase A is a constituent of activated pericytes in angiogenesis. J Pathol 179, 436–442.

    CAS  PubMed  Google Scholar 

  • Shepro, D., and Morel, N.M.L. (1993). Pericyte physiology. FASEB J 7, 1031–1038.

    CAS  PubMed  Google Scholar 

  • Shibata, T., Makino, A., Ogata, R., Nakamura, S., Ito, T., Nagata, K., Terauchi, Y., Oishi, T., Fujieda, M., Takahashi, Y., et al. (2020). Respiratory syncytial virus infection exacerbates pneumococcal pneumonia via Gas6/Axl-mediated macrophage polarization. J Clin Invest 130, 3021–3037.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sims, D., Horne, M.M., Creighan, M., and Donald, A. (1994). Heterogeneity of pericyte populations in equine skeletal muscle and dermal microvessels: a quantitative study. Anatom Histol Embryol 23, 232–238.

    CAS  Google Scholar 

  • Stratman, A.N., Schwindt, A.E., Malotte, K.M., and Davis, G.E. (2010). Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116, 4720–4730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert, M., Milde, L., Holm, A., Stanicek, L., Gengenbacher, N., Savant, S., Ruckdeschel, T., Hasanov, Z., Srivastava, K., Hu, J., et al. (2017). Pericyte-expressed Tie2 controls angiogenesis and vessel maturation. Nat Commun 8, 16106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vento-Tormo, R., Efremova, M., Botting, R.A., Turco, M.Y., Vento-Tormo, M., Meyer, K.B., Park, J.E., Stephenson, E., PolaÅ„ski, K., Goncalves, A., et al. (2018). Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353.

    CAS  PubMed  Google Scholar 

  • Williams, M.J., Sugatani, T., Agapova, O.A., Fang, Y., Gaut, J.P., Faugere, M.C., Malluche, H.H., and Hruska, K.A. (2018). The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int 93, 147–158.

    CAS  PubMed  Google Scholar 

  • Winkler, E.A., Birk, H., Burkhardt, J.K., Chen, X., Yue, J.K., Guo, D., Rutledge, W.C., Lasker, G.F., Partow, C., Tihan, T., et al. (2018). Reductions in brain pericytes are associated with arteriovenous malformation vascular instability. J Neurosurg 129, 1464–1474.

    PubMed  PubMed Central  Google Scholar 

  • Wu, C., Thalhamer, T., Franca, R.F., Xiao, S., Wang, C., Hotta, C., Zhu, C., Hirashima, M., Anderson, A.C., and Kuchroo, V.K. (2014). Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 41, 270–282.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the R script used for cellphoneDB analysis provided by Dr N. C. Henderson. This work was supported in part by the National Key Research and Development Program of China (2019YFA0802700, 2017YFA0103700) and the National Natural Science Foundation of China (91739301, 91339205, 81130005).

Author information

Author notes
  1. Contributed equally to this work

Authors and Affiliations

  1. Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences (CAS), Shanghai Jiao Tong University School of Medicine (SJTUSM) & CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai, 200031, China

    Ya-Na Guan & Qing Jing

  2. Chapman University, Irvine, CA, 92618, USA

    Yue Li & Moom Roosan

Authors
  1. Ya-Na Guan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Yue Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Moom Roosan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Qing Jing
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Moom Roosan or Qing Jing.

Additional information

Code availability

R scripts enabling the main steps of the analysis are available from the corresponding authors on reasonable request.

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Appendix

Supplementary material, approximately 44 KB.

Supplementary material, approximately 6.20 MB.

Supplementary material, approximately 128 KB.

Supplementary material, approximately 224 KB.

Supplementary material, approximately 36 KB.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, YN., Li, Y., Roosan, M. et al. Single-cell transcriptomics of murine mural cells reveals cellular heterogeneity. Sci. China Life Sci. 64, 1077–1086 (2021). https://doi.org/10.1007/s11427-020-1823-2

Download citation

  • Received: 30 July 2020

  • Accepted: 23 September 2020

  • Published: 03 November 2020

  • Issue Date: July 2021

  • DOI: https://doi.org/10.1007/s11427-020-1823-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • mural cells
  • single-cell analysis
  • heterogeneity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.