Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Science China Life Sciences
  3. Article
Ubiquitination modification: critical regulation of IRF family stability and activity
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

TRIM Proteins in Host Defense and Viral Pathogenesis

08 August 2020

Maria I. Giraldo, Adam Hage, … Ricardo Rajsbaum

Viruses, SUMO, and immunity: the interplay between viruses and the host SUMOylation system

03 August 2021

Fergan Imbert & Dianne Langford

Ubiquitin-Mediated Regulation of Autophagy During Viral Infection

13 January 2023

Joydeep Nag, Janvi Patel & Shashank Tripathi

USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication

07 September 2018

Chao Xu, Yang Peng, … Wei-Feng Shi

When MARCH family proteins meet viral infections

02 March 2021

Chunfu Zheng & Yan-Dong Tang

Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch

09 November 2018

Daisuke Aki, Qian Li, … Jee Ho Lee

RINCK-mediated monoubiquitination of cGAS promotes antiviral innate immune responses

09 May 2018

Zhao-Shan Liu, Zi-Yu Zhang, … Tao Li

The function and regulation of OTU deubiquitinases

28 December 2019

Jiansen Du, Lin Fu, … Lingqiang Zhang

The interaction of hepatitis B virus with the ubiquitin proteasome system in viral replication and associated pathogenesis

30 May 2019

Fanyun Kong, Hongjuan You, … Renxian Tang

Download PDF
  • Review
  • Published: 30 October 2020

Ubiquitination modification: critical regulation of IRF family stability and activity

  • Bao-qin Liu1,2,
  • Jin Jin2,3 &
  • Yi-yuan Li1,2 

Science China Life Sciences volume 64, pages 957–965 (2021)Cite this article

  • 829 Accesses

  • 7 Citations

  • Metrics details

Abstract

Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly targeted by endogenous and exogenous proteins in an ubiquitin-dependent manner. However, few reviews have summarized how host E3 ligases/DUBs or viral proteins regulate IRF stability and activity. Additionally, with recent technological developments, details about the ubiquitination of IRFs have been continuously revealed. As knowledge of how these proteins function and interact with IRFs may facilitate a better understanding of the regulation of IRFs in immune responses or other biological processes, we summarized current studies on the direct ubiquitination of IRFs, with an emphasis on how these proteins interact with IRFs and affect their activities, which may provide exciting targets for drug development by regulating the functions of specific E3 ligases.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Arnold, M.M. (2016). The rotavirus interferon antagonist NSP1: Many targets, many questions. J Virol 90, 5212–5215.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balkhi, M.Y., Fitzgerald, K.A., and Pitha, P.M. (2008). Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 28, 7296–7308.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barro, M., and Patton, J.T. (2005). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci USA 102, 4114–4119.

    CAS  PubMed  Google Scholar 

  • Barro, M., and Patton, J.T. (2007). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 81, 4473–4481.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J.D., Hofmann, M. A., and Ruggli, N. (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437.

    CAS  PubMed  Google Scholar 

  • Cao, C., An, R., Yu, Y.Y., Dai, H.Y., Qu, Z.H., Gao, M.C., and Wang, J.W. (2019). BICP0 negatively regulates TRAF6-mediated NF-κB and interferon activation by promoting K48-linked polyubiquitination of TRAF6. Front Microbiol 10, 3040.

    PubMed  Google Scholar 

  • Chattopadhyay, S., Kuzmanovic, T., Zhang, Y., Wetzel, J.L., and Sen, G.C. (2016). Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44, 1151–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay, S., and Sen, G.C. (2017). RIG-I-like receptor-induced IRF3 mediated pathway ofapoptosis (RIPA): a new antiviral pathway. Protein Cell 8, 165–168.

    CAS  PubMed  Google Scholar 

  • Chen, Y., Wu, Y., Yang, H., Li, X., Jie, M., Hu, C., Wu, Y., Yang, S., and Yang, Y. (2018). Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 9, 883.

    PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Rijnbrand, R., Jangra, R.K., Devaraj, S.G., Qu, L., Ma, Y., Lemon, S.M., and Li, K. (2007). Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366, 277–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z.J., and Sun, L.J. (2009). Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33, 275–286.

    CAS  PubMed  Google Scholar 

  • Deribe, Y.L., Pawson, T., and Dikic, I. (2010). Post-translational modifications in signal integration. Nat Struct Mol Biol 17, 666–672.

    CAS  PubMed  Google Scholar 

  • Doehle, B.P., Chang, K., Fleming, L., McNevin, J., Hladik, F., McElrath, M.J., and Gale Jr., M. (2012). Vpu-deficient HIV strains stimulate innate immune signaling responses in target cells. J Virol 86, 8499–8506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doehle, B.P., Hladik, F., McNevin, J.P., McElrath, M.J., and Gale Jr., M. (2009). Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol 83, 10395–10405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dove, K.K., and Klevit, R.E. (2017). RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol 429, 3363–3375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, B., Wang, Y., Xu, W., Li, S., Li, Q., and Xiong, S. (2013). Inhibition of histone deacetylase activity suppresses IFN-y induction of tripartite motif 22 via CHIP-mediated proteasomal degradation of IRF-1. J Immunol 191, 464–471.

    CAS  PubMed  Google Scholar 

  • Gatti, M., Pinato, S., Maiolica, A., Rocchio, F., Prato, M.G., Aebersold, R., and Penengo, L. (2015). RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10, 226–238.

    CAS  PubMed  Google Scholar 

  • Guo, Z., Xu, P., Ge, S., Zhang, C., Zheng, X., Xu, J., Liu, Z., Li, B., and Ge, S. (2017). Ubiquitin specific peptidase 4 stabilizes interferon regulatory factor protein and promotes its function to facilitate interleukin-4 expression in T helper type 2 cells. Int J Mol Med 40, 979–986.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada, H., Kitagawa, M., Tanaka, N., Yamamoto, H., Harada, K., Ishihara, M., and Taniguchi, T. (1993). Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science 259, 971–974.

    CAS  PubMed  Google Scholar 

  • Harikumar, K.B., Yester, J.W., Surace, M.J., Oyeniran, C., Price, M.M., Huang, W.C., Hait, N.C., Allegood, J.C., Yamada, A., Kong, X., et al. (2014). K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat Immunol 15, 231–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton, S.M., Borg, N.A., and Dixit, V.M. (2016). Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 213, 1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs, R., and Jefferies, C.A. (2008). Targeting IRFs by ubiquitination: regulating antiviral responses. Biochem Soc Trans 36, 453–458.

    CAS  PubMed  Google Scholar 

  • Higgs, R., Lazzari, E., Wynne, C., Ni Gabhann, J., Espinosa, A., Wahren-Herlenius, M., and Jefferies, C.A. (2010). Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One 5, e11776.

    PubMed  PubMed Central  Google Scholar 

  • Higgs, R., Gabhann, J.N., Larbi, N.B., Breen, E.P., Fitzgerald, K.A., and Jefferies, C.A. (2008). The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181, 1780–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Jeon, M., Liao, L., Yang, C., Elly, C., Yates III, J.R., and Liu, Y. C. (2010). K33-linked polyubiquitination of T cell receptor-ζ regulates proteolysis-independent T cell signaling. Immunity 33, 60–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huye, L.E., Ning, S., Kelliher, M., and Pagano, J.S. (2007). Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol Cell Biol 27, 2910–2918.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains: new molecular signals.’ Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9, 536–542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies, C.A. (2019). Regulating IRFs in IFN driven disease. Front Immunol 10, 325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191, 933–942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621–663.

    CAS  PubMed  Google Scholar 

  • Komander, D., and Rape, M. (2012). The ubiquitin code. Annu Rev Biochem 81, 203–229.

    CAS  PubMed  Google Scholar 

  • Kong, H.J., Anderson, D.E., Lee, C.H., Jang, M.K., Tamura, T., Tailor, P., Cho, H.K., Cheong, J.H., Xiong, H., Morse III, H.C., et al. (2007). Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 179, 26–30.

    CAS  PubMed  Google Scholar 

  • Landré, V., Pion, E., Narayan, V., Xirodimas, D.P., and Ball, K.L. (2013). DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem J 449, 707–717.

    PubMed  Google Scholar 

  • Langer, S., Hammer, C., Hopfensperger, K., Klein, L., Hotter, D., De Jesus, P.D., Herbert, K.M., Pache, L., Smith, N., van der Merwe, J.A., et al. (2019). HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses. eLife 8, e41930.

    PubMed  PubMed Central  Google Scholar 

  • Lazear, H.M., Lancaster, A., Wilkins, C., Suthar, M.S., Huang, A., Vick, S. C., Clepper, L., Thackray, L., Brassil, M.M., Virgin, H.W., et al. (2013). IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pa-thog 9, e1003118.

    CAS  Google Scholar 

  • Lazzari, E., Korczeniewska, J., Ni Gabhann, J., Smith, S., Barnes, B.J., and Jefferies, C.A. (2014). TRIpartite motif 21 (TRIM21) differentially regulates the stability of interferon regulatory factor 5 (IRF5) isoforms. PLoS One 9, e103609.

    PubMed  PubMed Central  Google Scholar 

  • Li, X., Gadzinsky, A., Gong, L., Tong, H., Calderon, V., Li, Y., Kitamura, D., Klein, U., Langdon, W.Y., Hou, F., et al. (2018). Cbl ubiquitin ligases control B cell exit from the germinal-center reaction. Immunity 48, 530–541.e6.

    CAS  PubMed  Google Scholar 

  • Lin, R., Nie, J., Ren, J., Liang, R., Li, D., Wang, P., Gao, C., Zhuo, C., Yang, C., and Li, B. (2017). USP4 interacts and positively regulates IRF8 function via K48-linked deubiquitination in regulatory T cells. FEBS Lett 591, 1677–1686.

    CAS  PubMed  Google Scholar 

  • Liu, J., Qian, C., and Cao, X. (2016). Post-translational modification control of innate immunity. Immunity 45, 15–30.

    PubMed  Google Scholar 

  • Marsili, G., Perrotti, E., Remoli, A.L., Acchioni, C., Sgarbanti, M., and Battistini, A. (2016). IFN regulatory factors and antiviral innate immunity: how viruses can get better. J Interferon Cytokine Res 36, 414–432.

    CAS  PubMed  Google Scholar 

  • Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction. Mol Cancer Res 1, 1001–1008.

    CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205.

    CAS  PubMed  Google Scholar 

  • Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2, 1133–1138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Narayan, V., Pion, E., Landré, V., Müller, P., and Ball, K.L. (2011). Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J Biol Chem 286, 607–619.

    CAS  PubMed  Google Scholar 

  • Nehyba, J., Hrdlickova, R., and Bose, H.R. (2009). Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol 26, 2539–2550.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nijman, S.M.B., Luna-Vargas, M.P.A., Velds, A., Brummelkamp, T.R., Dirac, A.M.G., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786.

    CAS  PubMed  Google Scholar 

  • Ning, S., Campos, A.D., Darnay, B.G., Bentz, G.L., and Pagano, J.S. (2008). TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol Cell Biol 28, 6536–6546.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning, S., Pagano, J.S., and Barber, G.N. (2011). IRF7: activation, regulation, modification and function. Genes Immun 12, 399–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning, S., and Pagano, J.S. (2010). The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 84, 6130–6138.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okumura, A., Alce, T., Lubyova, B., Ezelle, H., Strebel, K., and Pitha, P.M. (2008). HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373, 85–97.

    CAS  PubMed  Google Scholar 

  • Pettersson, S., Kelleher, M., Pion, E., Wallace, M., and Ball, K.L. (2009). Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem J 418, 575–585.

    CAS  PubMed  Google Scholar 

  • Pion, E., Narayan, V., Eckert, M., and Ball, K.L. (2009). Role of the IRF-1 enhancer domain in signalling polyubiquitination and degradation. Cell Signal 21, 1479–1487.

    CAS  PubMed  Google Scholar 

  • Randow, F., and Lehner, P.J. (2009). Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11, 527–534.

    CAS  PubMed  Google Scholar 

  • Remoli, A.L., Marsili, G., Perrotti, E., Acchioni, C., Sgarbanti, M., Borsetti, A., Hiscott, J., and Battistini, A. (2016). HIV-1 tat recruits HDM2 E3 ligase to target IRF-1 for ubiquitination and proteasomal degradation. mBio 7, e01528.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes, D.A., Ihrke, G., Reinicke, A.T., Malcherek, G., Towey, M., Isenberg, D.A., and Trowsdale, J. (2002). The 52 000 MW Ro/SS-A autoantigen in Sjogren’s syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology 106, 246–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson, R.J., Dixon, J., Malhotra, S., Hardman, M.J., Knowles, L., Boot-Handford, R.P., Shore, P., Whitmarsh, A., and Dixon, M.J. (2006). Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 38, 1329–1334.

    CAS  PubMed  Google Scholar 

  • Saira, K., Zhou, Y., and Jones, C. (2007). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J Virol 81, 3077–3086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saira, K., Zhou, Y., and Jones, C. (2009). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) associates with interferon regulatory factor 7 and consequently inhibits beta interferon promoter activity. J Virol 83, 3977–3981.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K.P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7, 598–605.

    CAS  PubMed  Google Scholar 

  • Savitsky, D., Tamura, T., Yanai, H., and Taniguchi, T. (2010). Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 59, 489–510.

    CAS  PubMed  Google Scholar 

  • Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32, 513–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey, K.B., Breen, E., and Jefferies, C.A. (2012). Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS ONE 7, e34041.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan, G., and Tsygankov, A.Y. (2006). The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209, 21–43.

    CAS  PubMed  Google Scholar 

  • Takaoka, A., Hayakawa, S., Yanai, H., Stoiber, D., Negishi, H., Kikuchi, H., Sasaki, S., Imai, K., Shibue, T., Honda, K., et al. (2003). Integration of interferon-a/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523.

    CAS  Google Scholar 

  • Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26, 535–584.

    CAS  PubMed  Google Scholar 

  • Thien, C.B.F., and Langdon, W.Y. (2005). c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391, 153–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Zhang, Y., Zhong, B., Wang, Y.Y., Diao, F.C., Wang, R.P., Zhang, M., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2007). RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-κB activation by targeting TAB2/3 for degradation. J Biol Chem 282, 16776–16782.

    CAS  PubMed  Google Scholar 

  • Tokunaga, F., and Iwai, K. (2012). LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infection 14, 563–572.

    CAS  PubMed  Google Scholar 

  • Tokunaga, F., Sakata, S., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., Nakagawa, T., Kato, M., Murata, S., Yamaoka, S., et al. (2009). Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 11, 123–132.

    CAS  PubMed  Google Scholar 

  • Tsuchida, T., Kawai, T., and Akira, S. (2009). Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins. Cell Res 19, 3–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verweij, M.C., Wellish, M., Whitmer, T., Malouli, D., Lapel, M., Jonjic, S., Haas, J.G., DeFilippis, V.R., Mahalingam, R., and Fruh, K. (2015). Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog 11, e1004901.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Liu, X., Cui, Y., Tang, Y., Chen, W., Li, S., Yu, H., Pan, Y., and Wang, C. (2014). The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919–933.

    CAS  PubMed  Google Scholar 

  • Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6, 599–609.

    CAS  PubMed  Google Scholar 

  • Wu-Baer, F., Lagrazon, K., Yuan, W., and Baer, R. (2003). The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278, 34743–34746.

    CAS  PubMed  Google Scholar 

  • Xiong, H., Li, H., Kong, H.J., Chen, Y., Zhao, J., Xiong, S., Huang, B., Gu, H., Mayer, L., Ozato, K., etal. (2005). Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J Biol Chem 280, 23531–23539.

    CAS  PubMed  Google Scholar 

  • Xue, Q., Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., Xue, Q., and Zheng, H. (2018a). Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 518, 1–7.

    CAS  PubMed  Google Scholar 

  • Xue, Q., Liu, H., Zhu, Z., Yang, F., Xue, Q., Cai, X., Liu, X., and Zheng, H. (2018b). Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. Antiviral Res 160, 183–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai, H., Negishi, H., and Taniguchi, T. (2012). The IRF family of transcription factors. Oncoimmunology 1, 1376–1386.

    PubMed  PubMed Central  Google Scholar 

  • Yang, K., Shi, H.X., Liu, X.Y., Shan, Y.F., Wei, B., Chen, S., and Wang, C. (2009). TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 182, 3782–3792.

    CAS  PubMed  Google Scholar 

  • Yang, M., Chen, T., Li, X., Yu, Z., Tang, S., Wang, C., Gu, Y., Liu, Y., Xu, S., Li, W., et al. (2015). K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+ T cell activation. Nat Immunol 16, 1253–1262.

    CAS  PubMed  Google Scholar 

  • Young, J.A., Sermwittayawong, D., Kim, H.J., Nandu, S., An, N., Erdjument-Bromage, H., Tempst, P., Coscoy, L., and Winoto, A. (2011). Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem 286, 6521–6531.

    CAS  PubMed  Google Scholar 

  • Yu, Y., and Hayward, G.S. (2010). The ubiquitin E3 ligase RAUL negatively regulates type I interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity 33, 863–877.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Wang, S.E., and Hayward, G.S. (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22, 59–70.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Lu, L.F., Li, Z.C., Zhou, X.Y., Zhou, Y., Chen, D.D., Li, S., and Zhang, Y.A. (2020). Grass carp reovirus VP56 represses interferon production by degrading phosphorylated IRF7. Fish Shellfish Immunol 99, 99–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Tian, Y., Wang, R.P., Gao, D., Zhang, Y., Diao, F.C., Chen, D. Y., Zhai, Z.H., and Shu, H.B. (2008). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18, 1096–1104.

    CAS  PubMed  Google Scholar 

  • Zhao, X., Zhu, H., Yu, J., Li, H., Ge, J., and Chen, W. (2016). c-Cbl-mediated ubiquitination of IRF3 negatively regulates IFN-β production and cellular antiviral response. Cell Signal 28, 1683–1693.

    CAS  PubMed  Google Scholar 

  • Zheng, D., Chen, G., Guo, B., Cheng, G., and Tang, H. (2008). PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res 18, 1105–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, N., and Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86, 129–157.

    CAS  PubMed  Google Scholar 

  • Zhu, H., Zheng, C., Xing, J., Wang, S., Li, S., Lin, R., and Mossman, K.L. (2011). Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol 85, 11079–11089.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0800503 and 2018YFD0500100), an excellent young scientist foundation of NSFC (31822017), Zhejiang Provincial Natural Science Foundation of China (LR19C080001), the National Natural Science Foundation of China (81572651 and 81771675), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

  1. Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China

    Bao-qin Liu & Yi-yuan Li

  2. MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China

    Bao-qin Liu, Jin Jin & Yi-yuan Li

  3. Sir Run Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou, 310016, China

    Jin Jin

Authors
  1. Bao-qin Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jin Jin
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yi-yuan Li
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yi-yuan Li.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Bq., Jin, J. & Li, Yy. Ubiquitination modification: critical regulation of IRF family stability and activity. Sci. China Life Sci. 64, 957–965 (2021). https://doi.org/10.1007/s11427-020-1796-0

Download citation

  • Received: 24 July 2020

  • Accepted: 11 August 2020

  • Published: 30 October 2020

  • Issue Date: June 2021

  • DOI: https://doi.org/10.1007/s11427-020-1796-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • IRFs
  • ubiquitination
  • E3 ubiquitin ligase
  • viral proteins
  • activation
  • degradation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.250.73

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.