Abstract
Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly targeted by endogenous and exogenous proteins in an ubiquitin-dependent manner. However, few reviews have summarized how host E3 ligases/DUBs or viral proteins regulate IRF stability and activity. Additionally, with recent technological developments, details about the ubiquitination of IRFs have been continuously revealed. As knowledge of how these proteins function and interact with IRFs may facilitate a better understanding of the regulation of IRFs in immune responses or other biological processes, we summarized current studies on the direct ubiquitination of IRFs, with an emphasis on how these proteins interact with IRFs and affect their activities, which may provide exciting targets for drug development by regulating the functions of specific E3 ligases.
References
Arnold, M.M. (2016). The rotavirus interferon antagonist NSP1: Many targets, many questions. J Virol 90, 5212–5215.
Balkhi, M.Y., Fitzgerald, K.A., and Pitha, P.M. (2008). Functional regulation of MyD88-activated interferon regulatory factor 5 by K63-linked polyubiquitination. Mol Cell Biol 28, 7296–7308.
Barro, M., and Patton, J.T. (2005). Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci USA 102, 4114–4119.
Barro, M., and Patton, J.T. (2007). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol 81, 4473–4481.
Bauhofer, O., Summerfield, A., Sakoda, Y., Tratschin, J.D., Hofmann, M. A., and Ruggli, N. (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81, 3087–3096.
Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437.
Cao, C., An, R., Yu, Y.Y., Dai, H.Y., Qu, Z.H., Gao, M.C., and Wang, J.W. (2019). BICP0 negatively regulates TRAF6-mediated NF-κB and interferon activation by promoting K48-linked polyubiquitination of TRAF6. Front Microbiol 10, 3040.
Chattopadhyay, S., Kuzmanovic, T., Zhang, Y., Wetzel, J.L., and Sen, G.C. (2016). Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44, 1151–1161.
Chattopadhyay, S., and Sen, G.C. (2017). RIG-I-like receptor-induced IRF3 mediated pathway ofapoptosis (RIPA): a new antiviral pathway. Protein Cell 8, 165–168.
Chen, Y., Wu, Y., Yang, H., Li, X., Jie, M., Hu, C., Wu, Y., Yang, S., and Yang, Y. (2018). Prolyl isomerase Pin1: a promoter of cancer and a target for therapy. Cell Death Dis 9, 883.
Chen, Z., Rijnbrand, R., Jangra, R.K., Devaraj, S.G., Qu, L., Ma, Y., Lemon, S.M., and Li, K. (2007). Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. Virology 366, 277–292.
Chen, Z.J., and Sun, L.J. (2009). Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33, 275–286.
Deribe, Y.L., Pawson, T., and Dikic, I. (2010). Post-translational modifications in signal integration. Nat Struct Mol Biol 17, 666–672.
Doehle, B.P., Chang, K., Fleming, L., McNevin, J., Hladik, F., McElrath, M.J., and Gale Jr., M. (2012). Vpu-deficient HIV strains stimulate innate immune signaling responses in target cells. J Virol 86, 8499–8506.
Doehle, B.P., Hladik, F., McNevin, J.P., McElrath, M.J., and Gale Jr., M. (2009). Human immunodeficiency virus type 1 mediates global disruption of innate antiviral signaling and immune defenses within infected cells. J Virol 83, 10395–10405.
Dove, K.K., and Klevit, R.E. (2017). RING-between-RING E3 ligases: emerging themes amid the variations. J Mol Biol 429, 3363–3375.
Gao, B., Wang, Y., Xu, W., Li, S., Li, Q., and Xiong, S. (2013). Inhibition of histone deacetylase activity suppresses IFN-y induction of tripartite motif 22 via CHIP-mediated proteasomal degradation of IRF-1. J Immunol 191, 464–471.
Gatti, M., Pinato, S., Maiolica, A., Rocchio, F., Prato, M.G., Aebersold, R., and Penengo, L. (2015). RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Rep 10, 226–238.
Guo, Z., Xu, P., Ge, S., Zhang, C., Zheng, X., Xu, J., Liu, Z., Li, B., and Ge, S. (2017). Ubiquitin specific peptidase 4 stabilizes interferon regulatory factor protein and promotes its function to facilitate interleukin-4 expression in T helper type 2 cells. Int J Mol Med 40, 979–986.
Harada, H., Kitagawa, M., Tanaka, N., Yamamoto, H., Harada, K., Ishihara, M., and Taniguchi, T. (1993). Anti-oncogenic and oncogenic potentials of interferon regulatory factors-1 and -2. Science 259, 971–974.
Harikumar, K.B., Yester, J.W., Surace, M.J., Oyeniran, C., Price, M.M., Huang, W.C., Hait, N.C., Allegood, J.C., Yamada, A., Kong, X., et al. (2014). K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nat Immunol 15, 231–238.
Heaton, S.M., Borg, N.A., and Dixit, V.M. (2016). Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 213, 1–13.
Higgs, R., and Jefferies, C.A. (2008). Targeting IRFs by ubiquitination: regulating antiviral responses. Biochem Soc Trans 36, 453–458.
Higgs, R., Lazzari, E., Wynne, C., Ni Gabhann, J., Espinosa, A., Wahren-Herlenius, M., and Jefferies, C.A. (2010). Self protection from anti-viral responses—Ro52 promotes degradation of the transcription factor IRF7 downstream of the viral Toll-Like receptors. PLoS One 5, e11776.
Higgs, R., Gabhann, J.N., Larbi, N.B., Breen, E.P., Fitzgerald, K.A., and Jefferies, C.A. (2008). The E3 ubiquitin ligase Ro52 negatively regulates IFN-β production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3. J Immunol 181, 1780–1786.
Huang, H., Jeon, M., Liao, L., Yang, C., Elly, C., Yates III, J.R., and Liu, Y. C. (2010). K33-linked polyubiquitination of T cell receptor-ζ regulates proteolysis-independent T cell signaling. Immunity 33, 60–70.
Huye, L.E., Ning, S., Kelliher, M., and Pagano, J.S. (2007). Interferon regulatory factor 7 is activated by a viral oncoprotein through RIP-dependent ubiquitination. Mol Cell Biol 27, 2910–2918.
Ikeda, F., and Dikic, I. (2008). Atypical ubiquitin chains: new molecular signals.’ Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9, 536–542.
Jefferies, C.A. (2019). Regulating IRFs in IFN driven disease. Front Immunol 10, 325.
Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191, 933–942.
Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18, 621–663.
Komander, D., and Rape, M. (2012). The ubiquitin code. Annu Rev Biochem 81, 203–229.
Kong, H.J., Anderson, D.E., Lee, C.H., Jang, M.K., Tamura, T., Tailor, P., Cho, H.K., Cheong, J.H., Xiong, H., Morse III, H.C., et al. (2007). Cutting edge: autoantigen Ro52 is an interferon inducible E3 ligase that ubiquitinates IRF-8 and enhances cytokine expression in macrophages. J Immunol 179, 26–30.
Landré, V., Pion, E., Narayan, V., Xirodimas, D.P., and Ball, K.L. (2013). DNA-binding regulates site-specific ubiquitination of IRF-1. Biochem J 449, 707–717.
Langer, S., Hammer, C., Hopfensperger, K., Klein, L., Hotter, D., De Jesus, P.D., Herbert, K.M., Pache, L., Smith, N., van der Merwe, J.A., et al. (2019). HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses. eLife 8, e41930.
Lazear, H.M., Lancaster, A., Wilkins, C., Suthar, M.S., Huang, A., Vick, S. C., Clepper, L., Thackray, L., Brassil, M.M., Virgin, H.W., et al. (2013). IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pa-thog 9, e1003118.
Lazzari, E., Korczeniewska, J., Ni Gabhann, J., Smith, S., Barnes, B.J., and Jefferies, C.A. (2014). TRIpartite motif 21 (TRIM21) differentially regulates the stability of interferon regulatory factor 5 (IRF5) isoforms. PLoS One 9, e103609.
Li, X., Gadzinsky, A., Gong, L., Tong, H., Calderon, V., Li, Y., Kitamura, D., Klein, U., Langdon, W.Y., Hou, F., et al. (2018). Cbl ubiquitin ligases control B cell exit from the germinal-center reaction. Immunity 48, 530–541.e6.
Lin, R., Nie, J., Ren, J., Liang, R., Li, D., Wang, P., Gao, C., Zhuo, C., Yang, C., and Li, B. (2017). USP4 interacts and positively regulates IRF8 function via K48-linked deubiquitination in regulatory T cells. FEBS Lett 591, 1677–1686.
Liu, J., Qian, C., and Cao, X. (2016). Post-translational modification control of innate immunity. Immunity 45, 15–30.
Marsili, G., Perrotti, E., Remoli, A.L., Acchioni, C., Sgarbanti, M., and Battistini, A. (2016). IFN regulatory factors and antiviral innate immunity: how viruses can get better. J Interferon Cytokine Res 36, 414–432.
Moll, U.M., and Petrenko, O. (2003). The MDM2-p53 interaction. Mol Cancer Res 1, 1001–1008.
Mukhopadhyay, D., and Riezman, H. (2007). Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205.
Murata, S., Minami, Y., Minami, M., Chiba, T., and Tanaka, K. (2001). CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep 2, 1133–1138.
Narayan, V., Pion, E., Landré, V., Müller, P., and Ball, K.L. (2011). Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J Biol Chem 286, 607–619.
Nehyba, J., Hrdlickova, R., and Bose, H.R. (2009). Dynamic evolution of immune system regulators: the history of the interferon regulatory factor family. Mol Biol Evol 26, 2539–2550.
Nijman, S.M.B., Luna-Vargas, M.P.A., Velds, A., Brummelkamp, T.R., Dirac, A.M.G., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786.
Ning, S., Campos, A.D., Darnay, B.G., Bentz, G.L., and Pagano, J.S. (2008). TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol Cell Biol 28, 6536–6546.
Ning, S., Pagano, J.S., and Barber, G.N. (2011). IRF7: activation, regulation, modification and function. Genes Immun 12, 399–414.
Ning, S., and Pagano, J.S. (2010). The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 84, 6130–6138.
Okumura, A., Alce, T., Lubyova, B., Ezelle, H., Strebel, K., and Pitha, P.M. (2008). HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology 373, 85–97.
Pettersson, S., Kelleher, M., Pion, E., Wallace, M., and Ball, K.L. (2009). Role of Mdm2 acid domain interactions in recognition and ubiquitination of the transcription factor IRF-2. Biochem J 418, 575–585.
Pion, E., Narayan, V., Eckert, M., and Ball, K.L. (2009). Role of the IRF-1 enhancer domain in signalling polyubiquitination and degradation. Cell Signal 21, 1479–1487.
Randow, F., and Lehner, P.J. (2009). Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol 11, 527–534.
Remoli, A.L., Marsili, G., Perrotti, E., Acchioni, C., Sgarbanti, M., Borsetti, A., Hiscott, J., and Battistini, A. (2016). HIV-1 tat recruits HDM2 E3 ligase to target IRF-1 for ubiquitination and proteasomal degradation. mBio 7, e01528.
Rhodes, D.A., Ihrke, G., Reinicke, A.T., Malcherek, G., Towey, M., Isenberg, D.A., and Trowsdale, J. (2002). The 52 000 MW Ro/SS-A autoantigen in Sjogren’s syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology 106, 246–256.
Richardson, R.J., Dixon, J., Malhotra, S., Hardman, M.J., Knowles, L., Boot-Handford, R.P., Shore, P., Whitmarsh, A., and Dixon, M.J. (2006). Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch. Nat Genet 38, 1329–1334.
Saira, K., Zhou, Y., and Jones, C. (2007). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J Virol 81, 3077–3086.
Saira, K., Zhou, Y., and Jones, C. (2009). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) associates with interferon regulatory factor 7 and consequently inhibits beta interferon promoter activity. J Virol 83, 3977–3981.
Saitoh, T., Tun-Kyi, A., Ryo, A., Yamamoto, M., Finn, G., Fujita, T., Akira, S., Yamamoto, N., Lu, K.P., and Yamaoka, S. (2006). Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7, 598–605.
Savitsky, D., Tamura, T., Yanai, H., and Taniguchi, T. (2010). Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother 59, 489–510.
Schneider, W.M., Chevillotte, M.D., and Rice, C.M. (2014). Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32, 513–545.
Stacey, K.B., Breen, E., and Jefferies, C.A. (2012). Tyrosine phosphorylation of the E3 ubiquitin ligase TRIM21 positively regulates interaction with IRF3 and hence TRIM21 activity. PLoS ONE 7, e34041.
Swaminathan, G., and Tsygankov, A.Y. (2006). The Cbl family proteins: ring leaders in regulation of cell signaling. J Cell Physiol 209, 21–43.
Takaoka, A., Hayakawa, S., Yanai, H., Stoiber, D., Negishi, H., Kikuchi, H., Sasaki, S., Imai, K., Shibue, T., Honda, K., et al. (2003). Integration of interferon-a/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523.
Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26, 535–584.
Thien, C.B.F., and Langdon, W.Y. (2005). c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 391, 153–166.
Tian, Y., Zhang, Y., Zhong, B., Wang, Y.Y., Diao, F.C., Wang, R.P., Zhang, M., Chen, D.Y., Zhai, Z.H., and Shu, H.B. (2007). RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-κB activation by targeting TAB2/3 for degradation. J Biol Chem 282, 16776–16782.
Tokunaga, F., and Iwai, K. (2012). LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infection 14, 563–572.
Tokunaga, F., Sakata, S., Saeki, Y., Satomi, Y., Kirisako, T., Kamei, K., Nakagawa, T., Kato, M., Murata, S., Yamaoka, S., et al. (2009). Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol 11, 123–132.
Tsuchida, T., Kawai, T., and Akira, S. (2009). Inhibition of IRF3-dependent antiviral responses by cellular and viral proteins. Cell Res 19, 3–4.
Verweij, M.C., Wellish, M., Whitmer, T., Malouli, D., Lapel, M., Jonjic, S., Haas, J.G., DeFilippis, V.R., Mahalingam, R., and Fruh, K. (2015). Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog 11, e1004901.
Wang, Q., Liu, X., Cui, Y., Tang, Y., Chen, W., Li, S., Yu, H., Pan, Y., and Wang, C. (2014). The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. Immunity 41, 919–933.
Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6, 599–609.
Wu-Baer, F., Lagrazon, K., Yuan, W., and Baer, R. (2003). The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278, 34743–34746.
Xiong, H., Li, H., Kong, H.J., Chen, Y., Zhao, J., Xiong, S., Huang, B., Gu, H., Mayer, L., Ozato, K., etal. (2005). Ubiquitin-dependent degradation of interferon regulatory factor-8 mediated by Cbl down-regulates interleukin-12 expression. J Biol Chem 280, 23531–23539.
Xue, Q., Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., Xue, Q., and Zheng, H. (2018a). Seneca Valley Virus 3Cpro abrogates the IRF3- and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 518, 1–7.
Xue, Q., Liu, H., Zhu, Z., Yang, F., Xue, Q., Cai, X., Liu, X., and Zheng, H. (2018b). Seneca Valley Virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. Antiviral Res 160, 183–189.
Yanai, H., Negishi, H., and Taniguchi, T. (2012). The IRF family of transcription factors. Oncoimmunology 1, 1376–1386.
Yang, K., Shi, H.X., Liu, X.Y., Shan, Y.F., Wei, B., Chen, S., and Wang, C. (2009). TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 182, 3782–3792.
Yang, M., Chen, T., Li, X., Yu, Z., Tang, S., Wang, C., Gu, Y., Liu, Y., Xu, S., Li, W., et al. (2015). K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+ T cell activation. Nat Immunol 16, 1253–1262.
Young, J.A., Sermwittayawong, D., Kim, H.J., Nandu, S., An, N., Erdjument-Bromage, H., Tempst, P., Coscoy, L., and Winoto, A. (2011). Fas-associated death domain (FADD) and the E3 ubiquitin-protein ligase TRIM21 interact to negatively regulate virus-induced interferon production. J Biol Chem 286, 6521–6531.
Yu, Y., and Hayward, G.S. (2010). The ubiquitin E3 ligase RAUL negatively regulates type I interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity 33, 863–877.
Yu, Y., Wang, S.E., and Hayward, G.S. (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22, 59–70.
Zhang, C., Lu, L.F., Li, Z.C., Zhou, X.Y., Zhou, Y., Chen, D.D., Li, S., and Zhang, Y.A. (2020). Grass carp reovirus VP56 represses interferon production by degrading phosphorylated IRF7. Fish Shellfish Immunol 99, 99–106.
Zhang, M., Tian, Y., Wang, R.P., Gao, D., Zhang, Y., Diao, F.C., Chen, D. Y., Zhai, Z.H., and Shu, H.B. (2008). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res 18, 1096–1104.
Zhao, X., Zhu, H., Yu, J., Li, H., Ge, J., and Chen, W. (2016). c-Cbl-mediated ubiquitination of IRF3 negatively regulates IFN-β production and cellular antiviral response. Cell Signal 28, 1683–1693.
Zheng, D., Chen, G., Guo, B., Cheng, G., and Tang, H. (2008). PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res 18, 1105–1113.
Zheng, N., and Shabek, N. (2017). Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem 86, 129–157.
Zhu, H., Zheng, C., Xing, J., Wang, S., Li, S., Lin, R., and Mossman, K.L. (2011). Varicella-zoster virus immediate-early protein ORF61 abrogates the IRF3-mediated innate immune response through degradation of activated IRF3. J Virol 85, 11079–11089.
Acknowledgements
This work was supported by the National Key Research and Development Program of China (2018YFA0800503 and 2018YFD0500100), an excellent young scientist foundation of NSFC (31822017), Zhejiang Provincial Natural Science Foundation of China (LR19C080001), the National Natural Science Foundation of China (81572651 and 81771675), and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Additional information
Compliance and ethics
The author(s) declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Liu, Bq., Jin, J. & Li, Yy. Ubiquitination modification: critical regulation of IRF family stability and activity. Sci. China Life Sci. 64, 957–965 (2021). https://doi.org/10.1007/s11427-020-1796-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-020-1796-0
Keywords
- IRFs
- ubiquitination
- E3 ubiquitin ligase
- viral proteins
- activation
- degradation