Skip to main content
Log in

MicroRNA negatively regulates NF-κB-mediated immune responses by targeting NOD1 in the teleost fish Miichthys miiuy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Inflammation is a self-protection mechanism that can be triggered when innate immune cells detect infection. Eradication of pathogen infection requires appropriate immune and inflammatory responses, but excessive inflammatory responses can cause uncontrolled inflammation, autoimmune diseases, or pathogen dissemination. Mounting evidence has shown that microRNAs (miRNAs) in mammals act as important and versatile regulators of innate immunity and inflammation. However, miRNA-mediated regulation networks are largely unknown in inflammatory responses in lower vertebrates. Here miR-144 and miR-217 are identified as negative regulators in teleost inflammatory responses. We find that Vibrio harveyi and lipopolysaccharide (LPS) treatment significantly upregulate the expression of fish miR-144 and miR-217. Upregulated miR-144 and miR-217 suppress LPS-induced inflammatory cytokine expression by targeting nucleotide-binding oligomerization domain-containing protein 1 (NOD1), thereby avoiding excessive inflammatory responses. In addition, miR-144 and miR-217 regulate inflammatory responses through NOD1-induced nuclear factor kappa (NF-kB) signaling pathways. These findings demonstrate that miR-144 and miR-217 play regulatory roles in inflammatory responses by modulating the NOD1-induced NF-κB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675–680.

    CAS  PubMed  Google Scholar 

  • Austin, B., and Zhang, X.H. (2006). Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43, 119–124.

    CAS  PubMed  Google Scholar 

  • Baltimore, D., Boldin, M.P., O’Connell, R.M., Rao, D.S., and Taganov, K. D. (2008). MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9, 839–845.

    CAS  PubMed  Google Scholar 

  • Bertin, J., Nir, W.J., Fischer, C.M., Tayber, O.V., Errada, P.R., Grant, J.R., Keilty, J.J., Gosselin, M.L., Robison, K.E., Wong, G.H.W., et al. (1999). Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kB. J Biol Chem 274, 12955–12958.

    CAS  PubMed  Google Scholar 

  • Bi, D., Gao, Y., Chu, Q., Cui, J., and Xu, T. (2017). NOD1 is the innate immune receptor for iE-DAP and can activate NF-κB pathway in teleost fish. Dev Comp Immunol 76, 238–246.

    CAS  PubMed  Google Scholar 

  • Bi, D., Wang, Y., Gao, Y., Li, X., Chu, Q., Cui, J., and Xu, T. (2018). Recognition of lipopolysaccharide and activation of NF-κB by cytosolic sensor NOD1 in teleost fish. Front Immunol 9, 1413.

    PubMed  PubMed Central  Google Scholar 

  • Chu, Q., and Xu, T. (2016). miR-192 targeting IL-1RI regulates the immune response in miiuy croaker after pathogen infection in vitro and in vivo. Fish Shellfish Immunol 54, 537–543.

    CAS  PubMed  Google Scholar 

  • Chu, Q., Song, W., Cui, J., and Xu, T. (2017a). Genome-guided transcriptome analysis of miiuy croaker provides insights into pattern recognition receptors and cytokines in response to Vibrio anguillarum. Dev Comp Immunol 73, 72–78.

    CAS  PubMed  Google Scholar 

  • Chu, Q., Sun, Y., Cui, J., and Xu, T. (2017b). MicroRNA-3570 modulates the NF-κB pathway in teleost fish by targeting MyD88. J Immunol 198, 3274–3282.

    CAS  PubMed  Google Scholar 

  • Chu, Q., Yan, X., Liu, L., and Xu, T. (2019). The inducible microRNA-21 negatively modulates the inflammatory response in teleost fish via targeting IRAK4. Front Immunol 10, 1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang, A.Y., Chuang, J.C., Zhai, Z., Wu, F., and Kwon, J.H. (2014). NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis 20, 126–135.

    PubMed  Google Scholar 

  • da Silva Correia, J., Miranda, Y., Leonard, N., and Ulevitch, R. (2007). SGT1 is essential for Nod1 activation. Proc Natl Acad Sci USA 104, 6764–6769.

    PubMed  PubMed Central  Google Scholar 

  • Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F., and Hannon, G. J. (2004). Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.

    CAS  PubMed  Google Scholar 

  • Dryden, N.H., Sperone, A., Martin-Almedina, S., Hannah, R.L., Birdsey, G. M., Khan, S.T., Layhadi, J.A., Mason, J.C., Haskard, D.O., Göttgens, B., et al. (2012). The transcription factor Erg controls endothelial cell quiescence by repressing activity of nuclear factor (NF)-κB p65. J Biol Chem 287, 12331–12342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman, R.C., Farh, K.K.H., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets ofmicroRNAs. Genome Res 19, 92–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Girardin, S.E., Boneca, I.G., Carneiro, L.A.M., Antignac, A., Jéhanno, M., Viala, J., Tedin, K., Taha, M.K., Labigne, A., Zähringer, U., et al. (2003). Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587.

    CAS  PubMed  Google Scholar 

  • Girardin, S.E., Jéhanno, M., Mengin-Lecreulx, D., Sansonetti, P.J., Alzari, P.M., and Philpott, D.J. (2005). Identification of the critical residues involved in peptidoglycan detection by Nod1. J Biol Chem 280, 38648–38656.

    CAS  PubMed  Google Scholar 

  • Hahn, J.S. (2005). Regulation of Nod1 by Hsp90 chaperone complex. FEBS Lett 579, 4513–1519.

    CAS  PubMed  Google Scholar 

  • Hasegawa, M., Fujimoto, Y., Lucas, P.C., Nakano, H., Fukase, K., Núñez, G., and Inohara, N. (2008). A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-κB activation. EMBO J 27, 373–383.

    CAS  PubMed  Google Scholar 

  • He, Y., Pan, H., Zhang, G., and He, S. (2019). Comparative study on pattern recognition receptors in non-teleost ray-finned fishes and their evolutionary significance in primitive vertebrates. Sci China Life Sci 62, 566–578.

    PubMed  Google Scholar 

  • Hua, Y., Zhang, J., Jia, Z., Li, J., Xiong, X., and Xiong, Y. (2019). Immune-related genes response to stimulation ofmiR-155 overexpression in CIK (ctenopharyngodon idella kidney) cells and zebrafish. Fish Shellfish Immunol 94, 142–148.

    CAS  PubMed  Google Scholar 

  • Inohara, N., Chamaillard, M., McDonald, C., and Nuñez, G. (2005). NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74, 355–383.

    CAS  PubMed  Google Scholar 

  • Janeway Jr, C.A., and Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol 20, 197–216.

    CAS  PubMed  Google Scholar 

  • John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C., and Marks, D.S. (2004). Human microRNA targets. PLoS Biol 2, e363.

    PubMed  PubMed Central  Google Scholar 

  • Kang, H., Park, Y., Lee, A., Seo, H., Kim, M.J., Choi, J., Jo, H.N., Jeong, H.N., Cho, J.G., Chang, W., et al. (2017). Negative regulation of NOD1 mediated angiogenesis by PPARy-regulated miR-125a. Biochem Biophys Res Commun 482, 28–34.

    CAS  PubMed  Google Scholar 

  • Kawai, T., and Akira, S. (2010). The role ofpattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373–384.

    CAS  PubMed  Google Scholar 

  • Kwak, J.S., Kim, M.S., and Kim, K.H. (2019). Generation of microRNA-30e-producing recombinant viral hemorrhagic septicemia virus (VHSV) and its effect on in vitro immune responses. Fish Shellfish Immunol 94, 381–388.

    CAS  PubMed  Google Scholar 

  • Lewis, B.P., Shih, I., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.

    CAS  PubMed  Google Scholar 

  • Li, J., Gao, Y., and Xu, T. (2015a). Comparative genomic and evolution of vertebrate NOD1 and NOD2 genes and their immune response in miiuy croaker. Fish Shellfish Immunol 46, 387–397.

    CAS  PubMed  Google Scholar 

  • Li, J., Kong, L., Gao, Y., Wu, C and Xu, T. (2015b). Characterization of NLR-A subfamily members in miiuy croaker and comparative genomics revealed NLRX1 underwent duplication and lose in actinopterygii. Fish Shellfish Immunol 47, 397–406.

    CAS  PubMed  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408.

    CAS  PubMed  Google Scholar 

  • Luo, G., Sun, Y., Huang, L., Su, Y., Zhao, L., Qin Y., Xu, X., and Yan, Q. (2020). Time-resolved dual RNA-seq of tissue uncovers Pseudomonas plecoglossicida key virulence genes in host-pathogen interaction with Epinephelus coioides. Environ Microbiol 22, 677–693.

    CAS  PubMed  Google Scholar 

  • Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish Shellfish Immunol 20, 137–151.

    PubMed  Google Scholar 

  • Medzhitov, R. (2001). Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135–145.

    CAS  PubMed  Google Scholar 

  • Ogura, Y., Bonen, D.K., Inohara, N., Nicolae, D.L., Chen, F.F., Ramos, R., Britton, H., Moran, T., Karaliuskas, R., Duerr, R.H., et al. (2001). A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606.

    CAS  PubMed  Google Scholar 

  • Park, J.H., Kim, Y.G., McDonald, C., Kanneganti, T.D., Hasegawa, M., Body-Malapel, M., Inohara, N and Núñez, G. (2007). RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J Immunol 178, 2380–2386.

    CAS  PubMed  Google Scholar 

  • Park, S.B., Hikima, J., Suzuki, Y., Ohtani, M., Nho, S.W., Cha, I.S., Jang, H.B., Kondo, H., Hirono, I., Aoki, T., et al. (2012). Molecular cloning and functional analysis of nucleotide-binding oligomerization domain 1 (NOD1) in olive flounder, Paralichthys olivaceus. Dev Comp Immunol 36, 680–687.

    CAS  PubMed  Google Scholar 

  • Rusinov, V., Baev, V., Minkov, I.N., and Tabler, M. (2005). MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res 33, W696–W700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swain, B., Basu, M., and Samanta, M. (2013). NOD1 and NOD2 receptors in mrigal (Cirrhinus mrigala): inductive expression and downstream signalling in ligand stimulation and bacterial infections. J Biosci 38, 533–548.

    CAS  PubMed  Google Scholar 

  • Takeuchi, O., and Akira, S. (2010). Pattern recognition receptors and inflammation. Cell 140, 805–820.

    CAS  PubMed  Google Scholar 

  • Xiao, C., and Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell 136, 26–36.

    CAS  PubMed  Google Scholar 

  • Xu, T., Chu, Q., Cui, J., and Bi, D. (2018a). Inducible MicroRNA-3570 feedback inhibits the RIG-I-dependent innate immune response to rhabdovirus in teleost fish by targeting MAVS/IPS-1. J Virol 92.

  • Xu, T., Chu, Q., Cui, J., and Zhao, X. (2018b). The inducible microRNA-203 in fish represses the inflammatory responses to Gram-negative bacteria by targeting IL-1 receptor-associated kinase 4. J Biol Chem 293, 1386–1396.

    CAS  PubMed  Google Scholar 

  • Xu, T., Chu, Q., Cui, J., and Huo, R. (2018c). MicroRNA-216a inhibits NF-κB-mediated inflammatory cytokine production in teleost fish by modulating p65. Infect Immun 86, e00256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, T., Xu, G., Che, R., Wang, R., Wang, Y., Li, J., Wang, S., Shu, C., Sun, Y., Liu, T., et al. (2016). The genome of the miiuy croaker reveals well-developed innate immune and sensory systems. Sci Rep 6, 21902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto-Furusho, J.K., Barnich, N., Xavier, R., Hisamatsu, T., and Podolsky, D.K. (2006). Centaurin β1 down-regulates nucleotide-binding oligomerization domains 1- and 2-dependent NF-κB activation. J Biol Chem 281, 36060–36070.

    CAS  PubMed  Google Scholar 

  • Zhang, B., Luo, G., Zhao, L., Huang, L., Qin, Y., Su, Y., and Yan, Q. (2018). Integration of RNAi and RNA-seq uncovers the immune responses of Epinephelus coioides to L321RS19110 gene of Pseudomonas plecoglossicida. Fish Shellfish Immunol 81, 121–129.

    CAS  PubMed  Google Scholar 

  • Zhang, F., Peng, Z., Zhang, J., Liu, M., Fu R., and Luo, H. (2010). Isolation and identification of the pathogenic strain of Vibrio harveyi from Miichthys miiuy (in Chinese). Acta Micrbiol Sin 50, 304–309.

    CAS  Google Scholar 

  • Zhang, R., Zhao, J., Song, Y., Wang, X., Wang, L., Xu, J., Song, C., and Liu, F. (2014). The E3 ligase RNF34 is anovel negative regulator of the NOD1 pathway. Cell Physiol Biochem 33, 1954–1962.

    CAS  PubMed  Google Scholar 

  • Zou, J., and Secombes, C.J. (2011). Teleost fish interferons and their role in immunity. Dev Comp Immunol 35, 1376–1387.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31822057) and the National Key Research and Development Project (2018YFD0900503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianjun Xu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Q., Bi, D., Zheng, W. et al. MicroRNA negatively regulates NF-κB-mediated immune responses by targeting NOD1 in the teleost fish Miichthys miiuy. Sci. China Life Sci. 64, 803–815 (2021). https://doi.org/10.1007/s11427-020-1777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1777-y

Navigation