Skip to main content
Log in

Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

It is well established that an abnormal tetrahydrofolate (THF) cycle causes the accumulation of hydrogen peroxide (H2O2) and leaf senescence, however, the molecular mechanism underlying this relationship remains largely unknown. Here, we reported a novel rice tetrahydrofolate cycle mutant, which exhibited H2O2 accumulation and early leaf senescence phenotypes. Map-based cloning revealed that HPA1 encodes a tetrahydrofolate deformylase, and its deficiency led to the accumulation of tetrahydrofolate, 5-formyl tetrahydrofolate and 10-formyl tetrahydrofolate, in contrast, a decrease in 5,10-methenyl-tetrahydrofolate. The expression of tetrahydrofolate cycle-associated genes encoding serine hydroxymethyl transferase, glycine decarboxylase and 5-formyl tetrahydrofolate cycloligase was significantly down-regulated. In addition, the accumulation of H2O2 in hpa1 was not caused by elevated glycolate oxidation. Proteomics and enzyme activity analyses further revealed that mitochondria oxidative phosphorylation complex I and complex V were differentially expressed in hpa1, which was consistent with the H2O2 accumulation in hpa1. In a further feeding assay with exogenous glutathione (GSH), a non-enzymatic antioxidant that consumes H2O2, the H2O2 accumulation and leaf senescence phenotypes of hpa1 were obviously compensated. Taken together, our findings suggest that the accumulation of H2O2 in hpa1 may be mediated by an altered folate status and redox homeostasis, subsequently triggering leaf senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreyev, A.Y., Kushnareva, Y.E., Murphy, A.N., and Starkov, A.A. (2015). Mitochondrial ROS metabolism: 10 years later. Biochem Moscow 80, 517–531.

    CAS  Google Scholar 

  • Aoyama, K., Watabe, M., and Nakaki, T. (2008). Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108, 227–238.

    CAS  PubMed  Google Scholar 

  • Bauwe, H., and Kolukisaoglu, U. (2003). Genetic manipulation of glycine decarboxylation. J Exp Bot 54, 1523–1535.

    CAS  PubMed  Google Scholar 

  • Chen, B.X., Li, W.Y., Gao, Y.T., Chen, Z.J., Zhang, W.N., Liu, Q.J., Chen, Z., and Liu, J. (2016a). Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of rice seeds. Front Plant Sci 7, 1219.

    PubMed  PubMed Central  Google Scholar 

  • Chen, F., Dong, G., Wu, L., Wang, F., Yang, X., Ma, X., Wang, H., Wu, J., Zhang, Y., Wang, H., et al. (2016b). A nucleus-encoded chloroplast protein YL1 is involved in chloroplast development and efficient biogenesis of chloroplast ATP synthase in rice. Sci Rep 6, 32295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, F., Dong, G., Ma, X., Wang, F., Zhang, Y., Xiong, E., Wu, J., Wang, H., Qian, Q., Wu, L., et al. (2018). UMP kinase activity is involved in proper chloroplast development in rice. Photosynth Res 137, 53–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P. (2012). Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158, 340–351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Xu, Y., Luo, W., Li, W., Chen, N., Zhang, D., and Chong, K. (2013). The F-box protein OsFBK12 targets OsSAMS1 for degradation and affects pleiotropic phenotypes, including leaf senescence, in rice. Plant Physiol 163, 1673–1685.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova, E., Goyer, A., Naponelli, V., Krassovskaya, I., Gregory Iii, J.F., Hanson, A.D., and Shachar-Hill, Y. (2008). Arabidopsis 10-formyl tetrahydrofolate deformylases are essential for photorespiration. Plant Cell 20, 1818–1832.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cona, A., Rea, G., Botta, M., Corelli, F., Federico, R., and Angelini, R. (2006). Flavin-containing polyamine oxidase is a hydrogen peroxide source in the oxidative response to the protein phosphatase inhibitor cantharidin in Zea mays L. J Exp Bot 57, 2277–2289.

    CAS  PubMed  Google Scholar 

  • Cui, L.L., Lu, Y.S., Li, Y., Yang, C., and Peng, X.X. (2016). Overexpression of glycolate oxidase confers improved photosynthesis under high light and high temperature in rice. Front Plant Sci 7.

  • Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Longevialle, A.F., Meyer, E.H., Andrés, C., Taylor, N.L., Lurin, C., Millar, A.H., and Small, I.D. (2007). The pentatricopeptide repeat gene OTP43 is required for trans-splicing of the mitochondrial nad1 intron 1 in Arabidopsis thaliana. Plant Cell 19, 3256–3265.

    PubMed  PubMed Central  Google Scholar 

  • Ding, S., Wang, L., Yang, Z., Lu, Q., Wen, X., and Lu, C. (2016). Decreased glutathione reductase2 leads to early leaf senescence in Arabidopsis. J Integr Plant Biol 58, 29–47.

    CAS  PubMed  Google Scholar 

  • Ducker, G.S., Chen, L., Morscher, R.J., Ghergurovich, J.M., Esposito, M., Teng, X., Kang, Y., and Rabinowitz, J.D. (2016). Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab 23, 1140–1153.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engel, N., van den Daele, K., Kolukisaoglu, U., Morgenthal, K., Weckwerth, W., Pärnik, T., Keerberg, O., and Bauwe, H. (2007). Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol 144, 1328–1335.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, J., Ye, J., Kamphorst, J.J., Shlomi, T., Thompson, C.B., and Rabinowitz, J.D. (2014). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer, C.H., and Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11, 861–905.

    CAS  PubMed  Google Scholar 

  • Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.J., Pruvost, C., and Jouanin, L. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109, 1047–1057.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelova, V., De Lepeleire, J., Van Daele, J., Pluim, D., Mel, C., Cuypers, A., Leroux, O., Rébeillé, F., Schellens, J.H.M., Blancquaert, D., et al. (2017). Dihydrofolate reductase/thymidylate synthase fine-tunes the folate status and controls redox homeostasis in plants. Plant Cell 29, 2831–2853.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goyer, A., Collakova, E., de la Garza, R.D., Quinlivan, E.P., Williamson, J., Gregory Iii, J.F., Shachar-Hill, Y., and Hanson, A.D. (2005). 5-Formyltetrahydrofolate is an inhibitory but well tolerated metabolite in Arabidopsis leaves. J Biol Chem 280, 26137–26142.

    CAS  PubMed  Google Scholar 

  • Grant, C.M., MacIver, F.H., and Dawes, I.W. (1996). Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29, 511–515.

    CAS  PubMed  Google Scholar 

  • Guo, P., Li, Z., Huang, P., Li, B., Fang, S., Chu, J., and Guo, H. (2017). A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell 29, 2854–2870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson, A.D., Gage, D.A., and Shachar-Hill, Y. (2000). Plant one-carbon metabolism and its engineering. Trends Plant Sci 5, 206–213.

    CAS  PubMed  Google Scholar 

  • Heng, Y., Wu, C., Long, Y., Luo, S., Ma, J., Chen, J., Liu, J., Zhang, H., Ren, Y., Wang, M., et al. (2018). OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell 30, 889–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6, 271–282.

    CAS  PubMed  Google Scholar 

  • Huang, L., Sun, Q., Qin, F., Li, C., Zhao, Y., and Zhou, D.X. (2007). Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144, 1508–1519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Jiao, Y., Xie, N., Guo, Y., Zhang, F., Xiang, Z., Wang, R., Wang, F., Gao, Q., Tian, L., et al. (2019). OsNCED5, a 9-cis-epoxycarotenoid dioxygenase gene, regulates salt and water stress tolerance and leaf senescence in rice. Plant Sci 287, 110188.

    CAS  PubMed  Google Scholar 

  • Inada, N., Sakai, A., Kuroiwa, H., and Kuroiwa, T. (1998). Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles. Planta 205, 153–164.

    CAS  PubMed  Google Scholar 

  • Jajic, I., Sarna, T., and Strzalka, K. (2015). Senescence, stress, and reactive oxygen species. Plants 4, 393–411.

    PubMed  PubMed Central  Google Scholar 

  • Jamai, A., Salomé, P.A., Schilling, S.H., Weber, A.P.M., and McClung, C. R. (2009). Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase. Plant Cell 21, 595–606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, K., Shim, Y., Gi, E., An, G., and Paek, N.C. (2019). Mutation of ONAC096 enhances grain yield by increasing panicle number and delaying leaf senescence during grain filling in rice. Int J Mol Sci 20, 5241.

    CAS  PubMed Central  Google Scholar 

  • Kangasjärvi, S., Neukermans, J., Li, S., Aro, E.M., and Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63, 1619–1636.

    PubMed  Google Scholar 

  • Kapoor, D., Sharma, R., Handa, N., Kaur, H., Rattan, A., Yadav, P., Gautam, V., Kaur, R., and Bhardwaj, R. (2015). Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Front Environ Sci 3.

  • Karmakar, S., Molla, K.A., Chanda, P.K., Sarkar, S.N., Datta, S.K., and Datta, K. (2016). Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight. Planta 243, 115–130.

    CAS  PubMed  Google Scholar 

  • Kaurilind, E., Xu, E., and Brosché, M. (2015). A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 16, 837.

    PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kim, J.H., Lyu, J.I., Woo, H.R., and Lim, P.O. (2018). New insights into the regulation of leaf senescence in Arabidopsis. J Exp Bot 69, 787–799.

    CAS  PubMed  Google Scholar 

  • Kim, J., Woo, H.R., and Nam, H.G. (2016). Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research. Mol Plant 9, 813–825.

    CAS  PubMed  Google Scholar 

  • Kim, T., Kang, K., Kim, S.H., An, G., and Paek, N.C. (2019). OsWRKY5 promotes rice leaf senescence via senescence-associated NAC and abscisic acid biosynthesis pathway. Int J Mol Sci 20, 4437.

    CAS  PubMed Central  Google Scholar 

  • Koyama, T. (2018). A hidden link between leaf development and senescence. Plant Sci 276, 105–110.

    CAS  PubMed  Google Scholar 

  • Krifka, S., Hiller, K.A., Spagnuolo, G., Jewett, A., Schmalz, G., and Schweikl, H. (2012). The influence of glutathione on redox regulation by antioxidant proteins and apoptosis in macrophages exposed to 2-hydroxyethyl methacrylate (HEMA). Biomaterials 33, 5177–5186.

    CAS  PubMed  Google Scholar 

  • Kusaba, M., Ito, H., Morita, R., Iida, S., Sato, Y., Fujimoto, M., Kawasaki, S., Tanaka, R., Hirochika, H., Nishimura, M., et al. (2007). Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19, 1362–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kushnir, S., Babiychuk, E., Kampfenkel, K., Belles-Boix, E., Van Montagu, M., and Inzé, D. (1995). Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Proc Natl Acad Sci USA 92, 10580–10584.

    CAS  PubMed  Google Scholar 

  • Lee, R.H., Wang, C.H., Huang, L.T., and Chen, S.C. (2001). Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. J Exp Bot 52, 1117–1121.

    CAS  PubMed  Google Scholar 

  • Leng, Y., Ye, G., and Zeng, D. (2017a). Genetic dissection of leaf senescence in rice. Int J Mol Sci 18, 2686.

    PubMed Central  Google Scholar 

  • Leng, Y., Yang, Y., Ren, D., Huang, L., Dai, L., Wang, Y., Chen, L., Tu, Z., Gao, Y., Li, X., et al. (2017b). A rice PECTATE LYASE-LIKE gene is required for plant growth and leaf senescence. Plant Physiol 174, 1151–1166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Zhu, Z., Chern, M., Yin, J., Yang, C., Ran, L., Cheng, M., He, M., Wang, K., Wang, J., et al. (2017). A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170, 114–126.e15.

    CAS  PubMed  Google Scholar 

  • Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., et al. (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci USA 111, 10013–10018.

    CAS  PubMed  Google Scholar 

  • Lim, P.O., Kim, H.J., and Gil Nam, H. (2007). Leaf senescence. Annu Rev Plant Biol 58, 115–136.

    CAS  PubMed  Google Scholar 

  • Lin, H.C., Karki, S., Coe, R.A., Bagha, S., Khoshravesh, R., Balahadia, C. P., Ver Sagun, J., Tapia, R., Israel, W.K., Montecillo, F., et al. (2016). Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant Cell Physiol 57, 919–932.

    CAS  PubMed  Google Scholar 

  • Luo, L., He, Y., Zhao, Y., Xu, Q., Wu, J., Ma, H., Guo, H., Bai, L., Zuo, J., Zhou, J.M., et al. (2019). Regulation of mitochondrial NAD pool via NAD+ transporter 2 is essential for matrix NADH homeostasis and ROS production in Arabidopsis. Sci China Life Sci 62, 991–1002.

    CAS  PubMed  Google Scholar 

  • Mao, C., Lu, S., Lv, B., Zhang, B., Shen, J., He, J., Luo, L., Xi, D., Chen, X., and Ming, F. (2017). A rice NAC transcription factor promotes leaf senescence via ABA biosynthesis. Plant Physiol 174, 1747–1763.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mhamdi, A. (2018). Managing competing interests: partitioning S between glutathione and protein synthesis. Plant Physiol 177, 867–868.

    CAS  PubMed  Google Scholar 

  • Morita, R., Sato, Y., Masuda, Y., Nishimura, M., and Kusaba, M. (2009). Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. Plant J 59, 940–952.

    CAS  PubMed  Google Scholar 

  • Nagy, P.L., McCorkle, G.M., and Zalkin, H. (1993). purU, a source of formate for purT-dependent phosphoribosyl-N-formylglycinamide synthesis. J Bacteriol 175, 7066–7073.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, B.K., Cai, X., and Nebenführ, A. (2007). A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51, 1126–1136.

    CAS  PubMed  Google Scholar 

  • Niu, L., and Liao, W. (2016). Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7.

  • Noctor, G., Mhamdi, A., Chaouch, S., Han, Y.I., Neukermans, J., Marquezgarcia, B., Queval, G., and Foyer, C.H. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ 35, 454–484.

    CAS  PubMed  Google Scholar 

  • Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., and Foyer, C.H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot 89, 841–850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nygaard, P., and Smith, J.M. (1993). Evidence for a novel glycinamide ribonucleotide transformylase in Escherichia coli. J Bacteriol 175, 3591–3597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., et al. (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passaia, G., Spagnolo Fonini, L., Caverzan, A., Jardim-Messeder, D., Christoff, A.P., Gaeta, M.L., de Araujo Mariath, J.E., Margis, R., and Margis-Pinheiro, M. (2013). The mitochondrial glutathione peroxidase GPX3 is essential for H2O2 homeostasis and root and shoot development in rice. Plant Sci 208, 93–101.

    CAS  PubMed  Google Scholar 

  • Petrov, V., Hille, J., Mueller-Roeber, B., and Gechev, T.S. (2015). ROSmediated abiotic stress-induced programmed cell death in plants. Front Plant Sci 6, 69.

    PubMed  PubMed Central  Google Scholar 

  • Piao, W., Kim, S.H., Lee, B.D., An, G., Sakuraba, Y., and Paek, N.C. (2019). Rice transcription factor OsMYB102 delays leaf senescence by down-regulating abscisic acid accumulation and signaling. J Exp Bot 70, 2699–2715.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pineau, B., Layoune, O., Danon, A., and De Paepe, R. (2008). L-galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283, 32500–32505.

    CAS  PubMed  Google Scholar 

  • Quirino, B.F., Noh, Y.S., Himelblau, E., and Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends Plant Sci 5, 278–282.

    CAS  PubMed  Google Scholar 

  • Rao, Y., Xu, N., Li, S., Hu, J., Jiao, R., Hu, P., Lin, H., Lu, C., Lin, X., Dai, Z., et al. (2019). PE-1, encoding heme oxygenase 1, impacts heading date and chloroplast development in rice (Oryza sativa L.). J Agric Food Chem 67, 7249–7257.

    CAS  PubMed  Google Scholar 

  • Rao, Y., Yang, Y., Xu, J., Li, X., Leng, Y., Dai, L., Huang, L., Shao, G., Ren, D., Hu, J., et al. (2015). EARLY SENESCENCE1 encodes a SCARLIKE PROTEIN2 that affects water loss in rice. Plant Physiol 169, 1225–1239.

    PubMed  PubMed Central  Google Scholar 

  • Rogers, H., and Munné-Bosch, S. (2016). Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: similar but different. Plant Physiol 171, 1560–1568.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas, C.M., Senthil-Kumar, M., Wang, K., Ryu, C.M., Kaundal, A., Mysore, K.S. (2012). Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24, 336–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong, H., Tang, Y., Zhang, H., Wu, P., Chen, Y., Li, M., Wu, G., and Jiang, H. (2013). The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170, 1367–1373.

    CAS  PubMed  Google Scholar 

  • Ros, R., Muñoz-Bertomeu, J., and Krueger, S. (2014). Serine in plants: biosynthesis, metabolism, and functions. Trends Plant Sci 19, 564–569.

    CAS  PubMed  Google Scholar 

  • Rouhier, N., Lemaire, S.D., and Jacquot, J.P. (2008). The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59, 143–166.

    CAS  PubMed  Google Scholar 

  • Sakuraba, Y., Kim, D., Han, S.H., Kim, S.H., Piao, W., Yanagisawa, S., An, G., and Paek, N.C. (2020). Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. Plant Cell 32, 630–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schippers, J.H.M., Schmidt, R., Wagstaff, C., and Jing, H.C. (2015). Living to die and dying to live: the survival strategy behind leaf senescence. Plant Physiol 169, 914–930.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta, D., Kannan, M., and Reddy, A.R. (2011). A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233, 1111–1127.

    CAS  PubMed  Google Scholar 

  • Tang, Y., Li, M., Chen, Y., Wu, P., Wu, G., and Jiang, H. (2011). Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. J Plant Physiol 168, 1952–1959.

    CAS  PubMed  Google Scholar 

  • Teixeira, F.K., Sanchez, C.G., Hurd, T.R., Seifert, J.R.K., Czech, B., Preall, J.B., Hannon, G.J., and Lehmann, R. (2015). ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nat Cell Biol 17, 689–696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Y., Fan, M., Qin, Z., Lv, H., Wang, M., Zhang, Z., Zhou, W., Zhao, N., Li, X., Han, C., et al. (2018). Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 9, 1063.

    PubMed  PubMed Central  Google Scholar 

  • Timm, S., Florian, A., Arrivault, S., Stitt, M., Fernie, A.R., and Bauwe, H. (2012). Glycine decarboxylase controls photosynthesis and plant growth. FEBS Lett 586, 3692–3697.

    CAS  PubMed  Google Scholar 

  • Vavilala, S.L., Gawde, K.K., Sinha, M., and D’Souza, J.S. (2015). Programmed cell death is induced by hydrogen peroxide but not by excessive ionic stress of sodium chloride in the unicellular green alga Chlamydomonas reinhardtii. Eur J Phycol 50, 422–438.

    CAS  Google Scholar 

  • Vicentini, F., and Matile, P. (1993). Gerontosomes, a multifunctional type of peroxisome in senescent leaves. J Plant Physiol 142, 50–56.

    CAS  Google Scholar 

  • Wang, B., Zhang, Y., Bi, Z., Liu, Q., Xu, T., Yu, N., Cao, Y., Zhu, A., Wu, W., Zhan, X., et al. (2019). Impaired function of the calcium-dependent protein kinase, OsCPK12, leads to early senescence in rice (Oryza sativa L.). Front Plant Sci 10, 52.

    PubMed  PubMed Central  Google Scholar 

  • Wang, D., Liu, H., Li, S., Zhai, G., Shao, J., and Tao, Y. (2015). Characterization and molecular cloning of a serine hydroxymethyltransferase 1 (OsSHM1) in rice. J Integr Plant Biol 57, 745–756.

    CAS  PubMed  Google Scholar 

  • Wang, S., Lei, C., Wang, J., Ma, J., Tang, S., Wang, C., Zhao, K., Tian, P., Zhang, H., Qi, C., et al. (2017). SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice. J Exp Bot 68, 899–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Chen, E., Ge, X., Gong, Q., Butt, H.I., Zhang, C., Yang, Z., Li, F., and Zhang, X. (2018). Overexpressed BRH1, a RING finger gene, alters rosette leaf shape in Arabidopsis thaliana. Sci China Life Sci 61, 79–87.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Lin, A., Loake, G.J., and Chu, C. (2013). H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. J Integr Plant Biol 55, 202–208.

    CAS  PubMed  Google Scholar 

  • Woo, H.R., Kim, H.J., Nam, H.G., and Lim, P.O. (2013). Plant leaf senescence and death—Regulation by multiple layers of control and implications for aging in general. J Cell Sci 126, 4823–4833.

    CAS  PubMed  Google Scholar 

  • Wu, B., Li, L., Qiu, T., Zhang, X., and Cui, S. (2018). Cytosolic APX2 is a pleiotropic protein involved in H2O2 homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Rep 37, 833–848.

    CAS  PubMed  Google Scholar 

  • Wu, J., Sun, Y., Zhao, Y., Zhang, J., Luo, L., Li, M., Wang, J., Yu, H., Liu, G., Yang, L., et al. (2015a). Deficient plastidic fatty acid synthesis triggers cell death by modulating mitochondrial reactive oxygen species. Cell Res 25, 621–633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, L., Ren, D., Hu, S., Li, G., Dong, G., Jiang, L., Hu, X., Ye, W., Cui, Y., Zhu, L., et al. (2016). Down-regulation of a nicotinate phosphoribosyltransferase gene, OsNaPRT1, leads to withered leaf tips. Plant Physiol 171, 1085–1098.

    PubMed  PubMed Central  Google Scholar 

  • Wu, T.M., Lin, W.R., Kao, C.H., and Hong, C.Y. (2015n). Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Mol Biol 87, 555–564.

    CAS  PubMed  Google Scholar 

  • Xu, H., Zhang, J., Zeng, J., Jiang, L., Liu, E., Peng, C., He, Z., and Peng, X. (2009). Inducible antisense suppression of glycolate oxidase reveals its strong regulation over photosynthesis in rice. J Exp Bot 60, 1799–1809.

    CAS  PubMed  Google Scholar 

  • Yamatani, H., Sato, Y., Masuda, Y., Kato, Y., Morita, R., Fukunaga, K., Nagamura, Y., Nishimura, M., Sakamoto, W., Tanaka, A., et al. (2013). NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll-protein complexes during leaf senescence. Plant J 74, 652–662.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Xu, J., Huang, L., Leng, Y., Dai, L., Rao, Y., Chen, L., Wang, Y., Tu, Z., Hu, J., et al. (2016). PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J Exp Bot 67, 1297–1310.

    CAS  PubMed  Google Scholar 

  • Zentgraf, U., Zimmermann, P., and Smykowski, A. (2012). Role of intracellular hydrogen peroxide as signalling molecule for plant senescence. In: Nagata, T., ed. Senescence.

  • Zhang, H., Zhao, Y., and Zhou, D.X. (2017a). Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res 45, 12241–12255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Li, X., Cui, L., Meng, S., Ye, N., and Peng, X. (2017b). Catalytic and functional aspects of different isozymes of glycolate oxidase in rice. BMC Plant Biol 17, 135.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Xu, Y., Xie, Z., Li, X., He, Z.H., and Peng, X.X. (2016). Association-dissociation of glycolate oxidase with catalase in rice: a potential switch to modulate intracellular H2O2 levels. Mol Plant 9, 737–748.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., Luo, L., Xu, J., Xin, P., Guo, H., Wu, J., Bai, L., Wang, G., Chu, J., Zuo, J., et al. (2018). Malate transported from chloroplast to mitochondrion triggers production of ROS and PCD in Arabidopsis thaliana. Cell Res 28, 448–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Q., Yu, Q., Wang, Z., Pan, Y., Lv, W., Zhu, L., Chen, R., and He, G. (2013). Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice. Plant Cell Environ 36, 1476–1489.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFD0101801), the National Natural Science Foundation of China (91735303 and 91335103), the Natural Science Foundation of Zhejiang (LY18C130010, LY18C130009, and LY20C130004), the Science and Technology Project of Hangzhou (20180432B03, 20180432B09, and 20180432B04) and the Foundation of Zhejiang Education Department (Y201431296).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Qian, Limin Wu or Yanchun Yu.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, E., Dong, G., Chen, F. et al. Formyl tetrahydrofolate deformylase affects hydrogen peroxide accumulation and leaf senescence by regulating the folate status and redox homeostasis in rice. Sci. China Life Sci. 64, 720–738 (2021). https://doi.org/10.1007/s11427-020-1773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1773-7

Keywords

Navigation