Skip to main content
Log in

Redox-dependent regulation of end-binding protein 1 activity by glutathionylation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Cytoskeletal proteins are susceptible to glutathionylation under oxidizing conditions, and oxidative damage has been implicated in several neurodegenerative diseases. End-binding protein 1 (EB1) is a master regulator of microtubule plus-end tracking proteins (+TIPs) and is critically involved in the control of microtubule dynamics and cellular processes. However, the impact of glutathionylation on EB1 functions remains unknown. Here we reveal that glutathionylation is important for controlling EB1 activity and protecting EB1 from irreversible oxidation. In vitro biochemical and cellular assays reveal that EB1 is glutathionylated. Diamide, a mild oxidizing reagent, reduces EB1 comet number and length in cells, indicating the impairment of microtubule dynamics. Three cysteine residues of EB1 are glutathionylated, with mutations of these three cysteines to serines attenuating microtubule dynamics but buffering diamide-induced decrease in microtubule dynamics. In addition, glutaredoxin 1 (Grx1) deglutathionylates EB1, and Grx1 depletion suppresses microtubule dynamics and leads to defects in cell division orientation and cell migration, suggesting a critical role of Grx1-mediated deglutathionylation in maintaining EB1 activity. Collectively, these data reveal that EB1 glutathionylation is an important protective mechanism for the regulation of microtubule dynamics and microtubule-based cellular activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, J., Luo, Y., Li, L., Ran, J., Wang, X., Gao, S., Liu, M., Li, D., Shui, W., and Zhou, J. (2014). Phosphoregulation of the dimerization and functions of end-binding protein 1. Protein Cell 5, 795–799.

    PubMed  PubMed Central  Google Scholar 

  • Chen, M., Cao, Y., Dong, D., Zhang, Z., Zhang, Y., Chen, J., Luo, Y., Chen, Q., Xiao, X., Zhou, J., et al. (2019). Regulation of mitotic spindle orientation by phosphorylation of end binding protein 1. Exp Cell Res 384, 111618.

    CAS  PubMed  Google Scholar 

  • Chen, W., Seefeldt, T., Young, A., Zhang, X., Zhao, Y., Ruffolo, J., Kaushik, R.S., and Guan, X. (2012). Microtubule S-glutathionylation as a potential approach for antimitotic agents. BMC Cancer 12, 245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Y., Zhang, X., Yu, M., Zhu, Y., Xing, J., and Lin, J. (2019). Techniques for detecting protein-protein interactions in living cells: principles, limitations, and recent progress. Sci China Life Sci 62, 619–632.

    CAS  PubMed  Google Scholar 

  • Dalle-Donne, I., Giustarini, D., Rossi, R., Colombo, R., and Milzani, A. (2003). Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34, 23–32.

    CAS  PubMed  Google Scholar 

  • Diao, M., Li, X., and Huang, S. (2020). Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. Sci China Life Sci 63, 239–250.

    CAS  PubMed  Google Scholar 

  • Dinoto, L., Deture, M.A., and Purich, D.L. (2005). Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein. Microsc Res Tech 67, 156–163.

    CAS  PubMed  Google Scholar 

  • Dong, X., Liu, F., Sun, L., Liu, M., Li, D., Su, D., Zhu, Z., Dong, J.T., Fu, L., and Zhou, J. (2010). Oncogenic function of microtubule end-binding protein 1 in breast cancer. J Pathol 220, 361–369.

    CAS  PubMed  Google Scholar 

  • Dyer, R.R., Ford, K.I., Robinson, R.A.S. (2019). The roles of S-nitrosylation and S-glutathionylation in Alzheimer’s disease. Methods Enzymol 626, 499–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galadari, S., Rahman, A., Pallichankandy, S., and Thayyullathil, F. (2017). Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 104, 144–164.

    CAS  PubMed  Google Scholar 

  • Gallogly, M.M., and Mieyal, J.J. (2007). Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7, 381–391.

    CAS  PubMed  Google Scholar 

  • Gao, S., Luo, Y., Wu, X., Li, Y., Zhou, Y., Lyu, R., Liu, M., Li, D., and Zhou, J. (2017). EB1 phosphorylation mediates the functions of ASK1 in pancreatic cancer development. Oncotarget 8, 98233–98241.

    PubMed  PubMed Central  Google Scholar 

  • García-Giménez, J.L., Romá-Mateo, C., Pérez-Machado, G., Peiró-Chova, L., and Pallardó, F.V. (2017). Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 112, 36–48.

    PubMed  Google Scholar 

  • Hayashi, I., Plevin, M.J., and Ikura, M. (2007). CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Nat Struct Mol Biol 14, 980–981.

    CAS  PubMed  Google Scholar 

  • Henty-Ridilla, J.L., Rankova, A., Eskin, J.A., Kenny, K., and Goode, B.L. (2016). Accelerated actin filament polymerization from microtubule plus ends. Science 352, 1004–1009.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J.T., Qian, X., van der Velden, J.L.J., Chia, S.B., McMillan, D.H., Flemer, S., Hoffman, S.M., Lahue, K.G., Schneider, R.W., Nolin, J.D., et al. (2016). Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells. Redox Biol 8, 375–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehr, S., Jortzik, E., Delahunty, C., Yates Iii, J.R., Rahlfs, S., and Becker, K. (2011). Protein S-glutathionylation in malaria parasites. Antioxid Redox Signal 15, 2855–2865.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.J., Kim, H.S., and Seo, Y.R. (2019). Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev 2019, 1–12.

    CAS  Google Scholar 

  • Klatt, P., Molina, E.P., and Lamas, S. (1999). Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem 274, 15857–15864.

    CAS  PubMed  Google Scholar 

  • Kommaddi, R.P., Tomar, D.S., Karunakaran, S., Bapat, D., Nanguneri, S., Ray, A., Schneider, B.L., Nair, D., and Ravindranath, V. (2019). Glutaredoxin1 diminishes amyloid beta-mediated oxidation of F-actin and reverses cognitive deficits in an Alzheimer’s Disease mouse model. Antioxid Redox Signal 31, 1321–1338.

    CAS  PubMed  Google Scholar 

  • Kumar, M., Mehra, S., Thakar, A., Shukla, N.K., Roychoudhary, A., Sharma, M.C., Ralhan, R., and Chauhan, S.S. (2016). End binding 1 (EB1) overexpression in oral lesions and cancer: A biomarker of tumor progression and poor prognosis. Clin Chim Acta 459, 45–52.

    CAS  PubMed  Google Scholar 

  • Kwak, H.J., Liu, P., Bajrami, B., Xu, Y., Park, S.Y., Nombela-Arrieta, C., Mondal, S., Sun, Y., Zhu, H., Chai, L., et al. (2015). Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42, 159–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landino, L.M., Hagedorn, T.D., and Kennett, K.L. (2014). Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase. Cytoskeleton 71, 707–718.

    CAS  PubMed  Google Scholar 

  • Li, D., Xie, S., Ren, Y., Huo, L., Gao, J., Cui, D., Liu, M., and Zhou, J. (2011). Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner. Protein Cell 2, 150–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J., O, W., Li, W., Jiang, Z.G., and Ghanbari, H.A. (2013). Oxidative stress and neurodegenerative disorders. Int J Mol Sci 14, 24438–24475.

    PubMed  PubMed Central  Google Scholar 

  • Li, J., Zou, Y., Li, Z., and Jiu, Y. (2019). Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling. Sci China Life Sci 62, 1368–1374.

    PubMed  Google Scholar 

  • Luo, Y., Ran, J., Xie, S., Yang, Y., Chen, J., Li, S., Shui, W., Li, D., Liu, M., and Zhou, J. (2016). ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules. Cell Discov 2, 16033.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mannaa, A., and Hanisch, F.G. (2020). Redox proteomes in human physiology and disease mechanisms. J Proteome Res 19, 1–17.

    CAS  PubMed  Google Scholar 

  • Moldogazieva, N.T., Lutsenko, S.V., and Terentiev, A.A. (2018a). Reactive oxygen and nitrogen species-induced protein modifications: Implication in carcinogenesis and anticancer therapy. Cancer Res 78, 6040–6047.

    CAS  PubMed  Google Scholar 

  • Moldogazieva, N.T., Mokhosoev, I.M., Feldman, N.B., and Lutsenko, S.V. (2018b). ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 52, 507–543.

    CAS  PubMed  Google Scholar 

  • O’Brien, M., Chalker, J., Slade, L., Gardiner, D., and Mailloux, R.J. (2017). Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med 106, 302–314.

    PubMed  Google Scholar 

  • Reid, T.A., Coombes, C., Mukherjee, S., Goldblum, R.R., White, K., Parmar, S., McClellan, M., Zanic, M., Courtemanche, N., and Gardner, M.K. (2019). Structural state recognition facilitates tip tracking of EB1 at growing microtubule ends. eLife 8, e48117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai, J., Li, J., Subramanian, K.K., Mondal, S., Bajrami, B., Hattori, H., Jia, Y., Dickinson, B.C., Zhong, J., Ye, K., et al. (2012). Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 37, 1037–1049.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sayas, C.L., and Avila, J. (2014). Regulation of EB1/3 proteins by classical MAPs in neurons. Bioarchitecture 4, 1–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stojkov, D., Amini, P., Oberson, K., Sokollik, C., Duppenthaler, A., Simon, H.U., and Yousefi, S. (2017). ROS and glutathionylation balance cytoskeletal dynamics in neutrophil extracellular trap formation. J Cell Biol 216, 4073–4090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, S., Yang, Y., Lin, X., Zhou, J., Li, D., and Liu, M. (2018). Characterization of a novel EB1 acetylation site important for the regulation of microtubule dynamics and cargo recruitment. J Cell Physiol 233, 2581–2589.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Liu, M., Li, D., Ran, J., Gao, J., Suo, S., Sun, S.C., and Zhou, J. (2014). CYLD regulates spindle orientation by stabilizing astral microtubules and promoting dishevelled-NuMA-dynein/dynactin complex formation. Proc Natl Acad Sci USA 111, 2158–2163.

    CAS  PubMed  Google Scholar 

  • You, Y., Chen, J., Zhu, F., Xu, Q., Han, L., Gao, X., Zhang, X., Luo, H.R., Miao, J., Sun, X., et al. (2019). Glutaredoxin 1 up-regulates deglutathionylation of α4 integrin and thereby restricts neutrophil mobilization from bone marrow. J Biol Chem 294, 2616–2627.

    CAS  PubMed  Google Scholar 

  • Young, A., Gill, R., and Mailloux, R.J. (2019). Protein S-glutathionylation: The linchpin for the transmission of regulatory information on redox buffering capacity in mitochondria. Chem Biol Interact 299, 151–162.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Ye, Z.W., Singh, S., Townsend, D.M., and Tew, K.D. (2018). An evolving understanding of the S-glutathionylation cycle in pathways of redox regulation. Free Radic Biol Med 120, 204–216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Liu, P., Zhang, C., Chiewchengchol, D., Zhao, F., Yu, H., Li, J., Kambara, H., Luo, K.Y., Venkataraman, A., et al. (2017). Positive regulation of interleukin-1β bioactivity by physiological ROS-mediated cysteine S-glutathionylation. Cell Rep 20, 224–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Luo, Y., Lyu, R., Chen, J., Liu, R., Li, D., Liu, M., and Zhou, J. (2016). Proto-oncogenic Src phosphorylates EB1 to regulate the microtubule-focal adhesion crosstalk and stimulate cell migration. Theranostics 6, 2129–2140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H., Kwak, H.J., Liu, P., Bajrami, B., Xu, Y., Park, S.Y., Nombela-Arrieta, C., Mondal, S., Kambara, H., Yu, H., et al. (2017). Reactive oxygen species-producing myeloid cells act as a bone marrow niche for sterile inflammation-induced reactive granulopoiesis. J Immunol 198, 2854–2864.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31701216, 31771542, 31900502), and the Natural Science Foundation of Shandong Province (ZR2017MC008). We thank Dr. Hongbo Luo for discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songbo Xie or Min Liu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, J., Yang, Y. et al. Redox-dependent regulation of end-binding protein 1 activity by glutathionylation. Sci. China Life Sci. 64, 575–583 (2021). https://doi.org/10.1007/s11427-020-1765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1765-6

Keywords

Navigation