Skip to main content
Log in

Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Due to their many advantageous properties, nanomaterials (NMs) have been utilized in diverse consumer goods, industrial products, and for therapeutic purposes. This situation leads to a constant risk of exposure and uptake by the human body, which are highly dependent on nanomaterial size. Consequently, an improved understanding of the interactions between different sizes of nanomaterials and biological systems is needed to design safer and more clinically relevant nano systems. We discuss the sizedependent effects of nanomaterials in living organisms. Upon entry into biological systems, nanomaterials can translocate biological barriers, distribute to various tissues and elicit different toxic effects on organs, based on their size and location. The association of nanomaterial size with physiological structures within organs determines the site of accumulation of nanoparticles. In general, nanomaterials smaller than 20 nm tend to accumulate in the kidney while nanomaterials between 20 and 100 nm preferentially deposit in the liver. After accumulating in organs, nanomaterials can induce inflammation, damage structural integrity and ultimately result in organ dysfunction, which helps better understand the size-dependent dynamic processes and toxicity of nanomaterials in organisms. The enhanced permeability and retention effect of nanomaterials and the utility of this phenomenon in tumor therapy are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auffan, M., Rose, J., Bottero, J.Y., Lowry, G.V., Jolivet, J.P., and Wiesner, M.R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotech 4, 634–641.

    CAS  Google Scholar 

  • Bai, R., Zhang, L., Liu, Y., Li, B., Wang, L., Wang, P., Autrup, H., Beer, C., and Chen, C. (2014). Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol Lett 226, 70–80.

    CAS  PubMed  Google Scholar 

  • Bhaskar, S., Tian, F., Stoeger, T., Kreyling, W., de la Fuente, J.M., Grazú, V., Borm, P., Estrada, G., Ntziachristos, V., and Razansky, D. (2010). Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood-brain barrier: perspectives on tracking and neuroimaging. Part Fibre Toxicol 7, 3.

    PubMed  PubMed Central  Google Scholar 

  • Boyes, W.K., Chen, R., Chen, C., and Yokel, R.A. (2012). The neurotoxic potential of engineered nanomaterials. Neurotoxicology 33, 902–910.

    PubMed  Google Scholar 

  • Brokamp, C., Rao, M.B., Fan, Z.T., and Ryan, P.H. (2015). Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmos Environ 101, 226–234.

    CAS  Google Scholar 

  • Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A. (2005). Chemistry and properties of nanocrystals of different shapes. Chem Rev 105, 1025–1102.

    CAS  PubMed  Google Scholar 

  • Cai, R., and Chen, C. (2019). The Crown and the Scepter: roles of the protein corona in nanomedicine. Adv Mater 31, 1805740.

    CAS  Google Scholar 

  • Chen, C., Li, Y.F., Qu, Y., Chai, Z., and Zhao, Y. (2013). Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev 42, 8266–8303.

    CAS  PubMed  Google Scholar 

  • Chen, H., Wang, B., Zhao, R., Gao, D., Guan, M., Zheng, L., Zhou, X., Chai, Z., Zhao, Y., and Feng, W. (2015). Coculture with low-dose SWCNT attenuates bacterial invasion and inflammation in human enterocyte-like Caco-2 cells. Small 11, 4366–4378.

    CAS  PubMed  Google Scholar 

  • Chen, H., Zhao, R., Wang, B., Zheng, L., Ouyang, H., Wang, H., Zhou, X., Zhang, D., Chai, Z., Zhao, Y., et al. (2018a). Acute oral administration of single-walled carbon nanotubes increases intestinal permeability and inflammatory responses: association with the changes in gut microbiota in mice. Adv Healthcare Mater 7, 1701313.

    Google Scholar 

  • Chen, R., Hu, B., Liu, Y., Xu, J., Yang, G., Xu, D., and Chen, C. (2016). Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim Biophys Acta Gen Subj 1860, 2844–2855.

    CAS  Google Scholar 

  • Chen, Y., Luo, X.S., Zhao, Z., Chen, Q., Wu, D., Sun, X., Wu, L., and Jin, L. (2018b). Summer-winter differences of PM2.5 toxicity to human alveolar epithelial cells (A549) and the roles of transition metals. Ecotoxicol Environ Saf 165, 505–509.

    CAS  PubMed  Google Scholar 

  • Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Yuan, H., Ye, C., Zhao, F., et al. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163, 109–120.

    CAS  PubMed  Google Scholar 

  • Cui, X., Xu, S., Wang, X., and Chen, C. (2018). The nano-bio interaction and biomedical applications of carbon nanomaterials. Carbon 138, 436–450.

    CAS  Google Scholar 

  • Dąbrowska-Bouta, B., Sulkowski, G., Frontczak-Baniewicz, M., Skalska, J., Sałek, M., Orzelska-Górka, J., and Strużyńska, L. (2018). Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles. Toxicology 408, 31–38.

    PubMed  Google Scholar 

  • Dash, K.K., Ali, N.A., Das, D., and Mohanta, D. (2019). Thorough evaluation of sweet potato starch and lemon-waste pectin based-edible films with nano-titania inclusions for food packaging applications. Int J Biol Macromol 139, 449–458.

    CAS  PubMed  Google Scholar 

  • Ding, J., Guan, Y., Cong, Y., Chen, L., Li, Y.F., Zhang, L., Zhang, L., Wang, J., Bai, R., Zhao, Y., et al. (2019). Single-particle analysis for structure and iron chemistry of atmospheric particulate matter. Anal Chem 92, 975–982.

    PubMed  Google Scholar 

  • Ding, Y., Su, S., Zhang, R., Shao, L., Zhang, Y., Wang, B., Li, Y., Chen, L., Yu, Q., Wu, Y., et al. (2017). Precision combination therapy for triple negative breast cancer via biomimetic polydopamine polymer core-shell nanostructures. Biomaterials 113, 243–252.

    CAS  PubMed  Google Scholar 

  • Fang, J., Nakamura, H., and Maeda, H. (2011). The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliver Rev 63, 136–151.

    CAS  Google Scholar 

  • Feng, S., Gao, D., Liao, F., Zhou, F., and Wang, X. (2016). The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 128, 67–74.

    CAS  PubMed  Google Scholar 

  • Flessner, M.F., Choi, J., Credit, K., Deverkadra, R., and Henderson, K. (2005). Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Cancer Res 11, 3117–3125.

    CAS  PubMed  Google Scholar 

  • Ge, C., Meng, L., Xu, L., Bai, R., Du, J., Zhang, L., Li, Y., Chang, Y., Zhao, Y., and Chen, C. (2012). Acute pulmonary and moderate cardiovascular responses of spontaneously hypertensive rats after exposure to singlewall carbon nanotubes. Nanotoxicology 6, 526–542.

    CAS  PubMed  Google Scholar 

  • Gu, Y., Huang, Y., Qiu, Z., Xu, Z., Li, D., Chen, L., Jiang, J., and Gao, L. (2020). Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci China Life Sci 63, 68–79.

    CAS  PubMed  Google Scholar 

  • Hallock, M.F., Greenley, P., DiBerardinis, L., and Kallin, D. (2009). Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. J Chem Health Saf 16, 16–23.

    CAS  Google Scholar 

  • Han, S., Liu, Y., Nie, X., Xu, Q., Jiao, F., Li, W., Zhao, Y., Wu, Y., and Chen, C. (2012). Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small 8, 1596–1606.

    CAS  PubMed  Google Scholar 

  • Hare, J.I., Lammers, T., Ashford, M.B., Puri, S., Storm, G., and Barry, S.T. (2017). Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliver Rev 108, 25–38.

    CAS  Google Scholar 

  • He, X., Zhang, H., Ma, Y., Bai, W., Zhang, Z., Lu, K., Ding, Y., Zhao, Y., and Chai, Z. (2010). Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 21, 285103.

    PubMed  Google Scholar 

  • Hu, W., Downward, G.S., Reiss, B., Xu, J., Bassig, B.A., Hosgood Iii, H. D., Zhang, L., Seow, W.J., Wu, G., Chapman, R.S., et al. (2014). Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of china with a high incidence of lung cancer. Environ Sci Technol 48, 8456–8464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huo, L., Chen, R., Zhao, L., Shi, X., Bai, R., Long, D., Chen, F., Zhao, Y., Chang, Y.Z., and Chen, C. (2015). Silver nanoparticles activate endoplasmic reticulum stress signaling pathway in cell and mouse models: The role in toxicity evaluation. Biomaterials 61, 307–315.

    CAS  PubMed  Google Scholar 

  • Jiang, X., Foldbjerg, R., Miclaus, T., Wang, L., Singh, R., Hayashi, Y., Sutherland, D., Chen, C., Autrup, H., and Beer, C. (2013). Multiplatform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett 222, 55–63.

    CAS  PubMed  Google Scholar 

  • Jolivet, J.P., Froidefond, C., Pottier, A., Chanéac, C., Cassaignon, S., Tronc, E., and Euzen, P. (2004). Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J Mater Chem 14, 3281–3288.

    CAS  Google Scholar 

  • Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., and Tekade, R.K. (2019). Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl 98, 1252–1276.

    CAS  PubMed  Google Scholar 

  • Kermanizadeh, A., Gaiser, B.K., Johnston, H., Brown, D.M., and Stone, V. (2014). Toxicological effect of engineered nanomaterials on the liver. Br J Pharmacol 171, 3980–3987.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolishetti, N., Dhar, S., Valencia, P.M., Lin, L.Q., Karnik, R., Lippard, S.J., Langer, R., and Farokhzad, O.C. (2010). Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA 107, 17939–17944.

    CAS  PubMed  Google Scholar 

  • Lang, J., Zhao, X., Wang, X., Zhao, Y., Li, Y., Zhao, R., Cheng, K., Li, Y., Han, X., Zheng, X., et al. (2019). Targeted co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano 13, 2176–2189.

    CAS  PubMed  Google Scholar 

  • Lao, F., Li, W., Han, D., Qu, Y., Liu, Y., Zhao, Y., and Chen, C. (2009). Fullerene derivatives protect endothelial cells against NO-induced damage. Nanotechnology 20, 225103.

    PubMed  Google Scholar 

  • Li, J., Chang, X., Chen, X., Gu, Z., Zhao, F., Chai, Z., and Zhao, Y. (2014). Toxicity of inorganic nanomaterials in biomedical imaging. Biotech Adv 32, 727–743.

    CAS  Google Scholar 

  • Li, R., Qiu, X., Xu, F., Lin, Y., Fang, Y., and Zhu, T. (2016a). Macrophagemediated effects of airborne fine particulate matter (PM2.5) on hepatocyte insulin resistance in vitro. ACS Omega 1, 736–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S., Zhang, Y., Wang, J., Zhao, Y., Ji, T., Zhao, X., Ding, Y., Zhao, X., Zhao, R., Li, F., et al. (2017). Nanoparticle-mediated local depletion of tumour-associated platelets disrupts vascular barriers and augments drug accumulation in tumours. Nat Biomed Eng 1, 667–679.

    CAS  PubMed  Google Scholar 

  • Li, X., Liu, W., Sun, L., Aifantis, K.E., Yu, B., Fan, Y., Feng, Q., Cui, F., and Watari, F. (2015). Effects of physicochemical properties of nanomaterials on their toxicity. J Biomed Mater Res 103, 2499–2507.

    CAS  Google Scholar 

  • Li, Y., Tang, J., Pan, D.X., Sun, L.D., Chen, C., Liu, Y., Wang, Y.F., Shi, S., and Yan, C.H. (2016b). A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition. ACS Nano 10, 2766–2773.

    CAS  PubMed  Google Scholar 

  • Li, Y.F., and Chen, C. (2011). Fate and toxicity of metallic and metalcontaining nanoparticles for biomedical applications. Small 7, 2965–2980.

    CAS  PubMed  Google Scholar 

  • Lin, S., and Wei, H. (2019). Design of high performance nanozymes: a single-atom strategy. Sci China Life Sci 62, 710–712.

    PubMed  Google Scholar 

  • Liu, H., Liu, T., Wang, H., Li, L., Tan, L., Fu, C., Nie, G., Chen, D., and Tang, F. (2013). Impact of PEGylation on the biological effects and light heat conversion efficiency of gold nanoshells on silica nanorattles. Biomaterials 34, 6967–6975.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Zhao, Y., Sun, B., and Chen, C. (2013). Understanding the toxicity of carbon nanotubes. Acc Chem Res 46, 702–713.

    CAS  PubMed  Google Scholar 

  • Liu, Z., and Qu, X. (2019). New insights into nanomaterials combating bacteria: ROS and beyond. Sci China Life Sci 62, 150–152.

    PubMed  Google Scholar 

  • Maeda, H. (2010). Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconj Chem 21, 797–802.

    CAS  Google Scholar 

  • Márquez-Ramírez, S.G., Delgado-Buenrostro, N.L., Chirino, Y.I., Iglesias, G.G., and López-Marure, R. (2012). Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells. Toxicology 302, 146–156.

    PubMed  Google Scholar 

  • Mei, M., Song, H., Chen, L., Hu, B., Bai, R., Xu, D., Liu, Y., Zhao, Y., and Chen, C. (2018). Early-life exposure to three size-fractionated ultrafine and fine atmospheric particulates in Beijing exacerbates asthma development in mature mice. Part Fibre Toxicol 15, 13.

    PubMed  PubMed Central  Google Scholar 

  • Meng, H., Chen, Z., Xing, G., Yuan, H., Chen, C., Zhao, F., Zhang, C., and Zhao, Y. (2007). Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175, 102–110.

    CAS  PubMed  Google Scholar 

  • Meng, H., Leong, W., Leong, K.W., Chen, C., and Zhao, Y. (2018). Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 174, 41–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen, N.P., Johnson, L.M., Grieger, K.D., Ambroso, J.L., and Fennell, T.R. (2019). Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod Toxicol 90, 150–165.

    CAS  PubMed  Google Scholar 

  • Oberdörster, G., Oberdörster, E., and Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113, 823–839.

    PubMed  PubMed Central  Google Scholar 

  • Pang, C., Brunelli, A., Zhu, C., Hristozov, D., Liu, Y., Semenzin, E., Wang, W., Tao, W., Liang, J., Marcomini, A., et al. (2016). Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 10, 129–139.

    CAS  PubMed  Google Scholar 

  • Peters, R.J.B., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H.J.P., Mech, A., Moniz, F.B., Pesudo, L.Q., et al. (2016). Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Tech 54, 155–164.

    CAS  Google Scholar 

  • Pujalté, I., Dieme, D., Haddad, S., Serventi, A.M., and Bouchard, M. (2017). Toxicokinetics of titanium dioxide (TiO2) nanoparticles after inhalation in rats. Toxicol Lett 265, 77–85.

    PubMed  Google Scholar 

  • Qin, G., Xia, J., Zhang, Y., Guo, L., Chen, R., and Sang, N. (2018). Ambient fine particulate matter exposure induces reversible cardiac dysfunction and fibrosis in juvenile and older female mice. Part Fibre Toxicol 15, 27.

    PubMed  PubMed Central  Google Scholar 

  • Qiu, Y., Liu, Y., Wang, L., Xu, L., Bai, R., Ji, Y., Wu, X., Zhao, Y., Li, Y., and Chen, C. (2010). Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31, 7606–7619.

    CAS  PubMed  Google Scholar 

  • Teng, C., Jia, J., Wang, Z., and Yan, B. (2020). Oral co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol Environ Saf 189, 109956.

    CAS  PubMed  Google Scholar 

  • Tian, X., Zhu, M., Du, L., Wang, J., Fan, Z., Liu, J., Zhao, Y., and Nie, G. (2013). Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. Small 9, 2432–2439.

    CAS  PubMed  Google Scholar 

  • Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J. (2012). Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24, 229–251.

    CAS  PubMed  Google Scholar 

  • Tsutsumi, Y., and Yoshioka, Y. (2011). Quantifying the biodistribution of nanoparticles. Nat Nanotech 6, 755.

    CAS  Google Scholar 

  • Wang, B., He, X., Zhang, Z., Zhao, Y., and Feng, W. (2013a). Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res 46, 761–769.

    CAS  PubMed  Google Scholar 

  • Wang, H., Wu, Y., Zhao, R., and Nie, G. (2013b). Engineering the assemblies of biomaterial nanocarriers for delivery of multiple theranostic agents with enhanced antitumor efficacy. Adv Mater 25, 1616–1622.

    CAS  PubMed  Google Scholar 

  • Wang, J., Bai, R., Yang, R., Liu, J., Tang, J., Liu, Y., Li, J., Chai, Z., and Chen, C. (2015). Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics 7, 516–524.

    CAS  PubMed  Google Scholar 

  • Wang, J., Chen, C., Liu, Y., Jiao, F., Li, W., Lao, F., Li, Y., Li, B., Ge, C., Zhou, G., et al. (2008a). Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183, 72–80.

    CAS  PubMed  Google Scholar 

  • Wang, J., Liu, J., Liu, Y., Wang, L., Cao, M., Ji, Y., Wu, X., Xu, Y., Bai, B., Miao, Q., et al. (2016). Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imagingguided therapy. Adv Mater 28, 8950–8958.

    CAS  PubMed  Google Scholar 

  • Wang, J., Liu, Y., Jiao, F., Lao, F., Li, W., Gu, Y., Li, Y., Ge, C., Zhou, G., Li, B., et al. (2008b). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254, 82–90.

    CAS  PubMed  Google Scholar 

  • Wang, J., Zhou, G., Chen, C., Yu, H., Wang, T., Ma, Y., Jia, G., Gao, Y., Li, B., Sun, J., et al. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168, 176–185.

    CAS  PubMed  Google Scholar 

  • Wang, R., Chen, R., Wang, Y., Chen, L., Qiao, J., Bai, R., Ge, G., Qin, G., and Chen, C. (2019a). Complex to simple: In vitro exposure of particulate matter simulated at the air-liquid interface discloses the health impacts of major air pollutants. Chemosphere 223, 263–274.

    CAS  PubMed  Google Scholar 

  • Wang, X., Wang, M., Lei, R., Zhu, S.F., Zhao, Y., and Chen, C. (2017). Chiral surface of nanoparticles determines the orientation of adsorbed transferrin and its interaction with receptors. ACS Nano 11, 4606–4616.

    CAS  PubMed  Google Scholar 

  • Wang, X., Wang, X., Bai, X., Yan, L., Liu, T., Wang, M., Song, Y., Hu, G., Gu, Z., Miao, Q., et al. (2019b). Nanoparticle ligand exchange and its effects at the nanoparticle-cell membrane interface. Nano Lett 19, 8–18.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Cai, R., and Chen, C. (2019c). The nano-bio interactions of nanomedicines: understanding the biochemical driving forces and redox reactions. Acc Chem Res 52, 1507–1518.

    CAS  PubMed  Google Scholar 

  • Wang, Y., and Tang, M. (2019). PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut 254, 112937.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Wang, B., Zhu, M.T., Li, M., Wang, H.J., Wang, M., Ouyang, H., Chai, Z.F., Feng, W.Y., and Zhao, Y.L. (2011). Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 205, 26–37.

    CAS  PubMed  Google Scholar 

  • Wu, B., Qin, L., Wang, M., Zhou, T., Dong, Y., and Chai, T. (2019). The composition of microbial aerosols, PM2.5, and PM10 in a duck house in Shandong province, China. Poult Sci 98, 5913–5924.

    CAS  PubMed  Google Scholar 

  • Xue, H., Liu, G., Zhang, H., Hu, R., and Wang, X. (2019). Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City, China. Chemosphere 220, 760–765.

    CAS  PubMed  Google Scholar 

  • Yang, Y., Wu, Y., Ren, Q., Zhang, L.G., Liu, S., and Zuo, Y.Y. (2018). Biophysical assessment of pulmonary surfactant predicts the lung toxicity of nanomaterials. Small Methods 2, 1700367.

    Google Scholar 

  • Yin, H., Chen, R., Casey, P.S., Ke, P.C., Davis, T.P., and Chen, C. (2015). Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv 5, 73963–73973.

    CAS  Google Scholar 

  • Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., Guo, M., Moreno, S.B.R., Wang, Y., Wang, H., Zhou, M., et al. (2020). Higher risk of cardiovascular disease associated with smaller size-fractioned particulate matter. Environ Sci Technol Lett 7, 95–101.

    CAS  Google Scholar 

  • Yokel, R.A. (2016). Physicochemical properties of engineered nanomaterials that influence their nervous system distribution and effects. Nanomedicine 12, 2081–2093.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Nie, X., Ji, Y., Liu, Y., Wu, X., Chen, C., and Fang, X. (2014). Quantitative biokinetics and systemic translocation of various gold nanostructures are highly dependent on their size and shape. J Nanosci Nanotech 14, 4124–4138.

    CAS  Google Scholar 

  • Zhang, L., Bai, R., Li, B., Ge, C., Du, J., Liu, Y., Le Guyader, L., Zhao, Y., Wu, Y., He, S., et al. (2011). Rutile TiO2 particles exert size and surface coating dependent retention and lesions on the murine brain. Toxicol Lett 207, 73–81.

    CAS  PubMed  Google Scholar 

  • Zhang, W., Wang, C., Li, Z., Lu, Z., Li, Y., Yin, J.J., Zhou, Y.T., Gao, X., Fang, Y., Nie, G., et al. (2012a). Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv Mater 24, 5391–5397.

    CAS  PubMed  Google Scholar 

  • Zhang, Z., Wang, L., Wang, J., Jiang, X., Li, X., Hu, Z., Ji, Y., Wu, X., and Chen, C. (2012b). Mesoporous silica-coated gold nanorods as a lightmediated multifunctional theranostic platform for cancer treatment. Adv Mater 24, 1418–1423.

    CAS  PubMed  Google Scholar 

  • Zhao, F., Zhao, Y., Liu, Y., Chang, X., Chen, C., and Zhao, Y. (2011). Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small 7, 1322–1337.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., Xing, G., and Chai, Z. (2008). Are carbon nanotubes safe? Nat Nanotech 3, 191–192.

    CAS  Google Scholar 

  • Zhou, H., Tang, J., Li, J., Li, W., Liu, Y., and Chen, C. (2017). In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale 9, 3040–3050.

    CAS  PubMed  Google Scholar 

  • Zhou, Q., Dong, C., Fan, W., Jiang, H., Xiang, J., Qiu, N., Piao, Y., Xie, T., Luo, Y., Li, Z., et al. (2020). Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Biomaterials 240, 119902.

    CAS  PubMed  Google Scholar 

  • Zhu, M., Perrett, S., and Nie, G. (2013a). Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small 9, 1619–1634.

    CAS  PubMed  Google Scholar 

  • Zhu, M.T., Feng, W.Y., Wang, B., Wang, T.C., Gu, Y.Q., Wang, M., Wang, Y., Ouyang, H., Zhao, Y.L., and Chai, Z.F. (2008). Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 247, 102–111.

    CAS  PubMed  Google Scholar 

  • Zhu, M.T., Feng, W.Y., Wang, Y., Wang, B., Wang, M., Ouyang, H., Zhao, Y.L., and Chai, Z.F. (2009). Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107, 342–351.

    CAS  PubMed  Google Scholar 

  • Zhu, M., Nie, G., Meng, H., Xia, T., Nel, A., and Zhao, Y. (2013b). Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46, 622–631.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (2016YFA0201600 and 2016YFE0133100), the Program for International S&T Cooperation Projects of the Ministry of Science and Technology of China (2018YFE0117200), the National Natural Science Foundation of China (31800844 and 51861145302), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (11621505), the Major Research Program of Guangdong province (2019B090917011), the CAS Key Research Program for Frontier Sciences (QYZDJ-SSW-SLH022), the Austrian-Chinese Cooperative RTD Project (GJHZ201949, FFG and CAS) and the CAS interdisciplinary innovation team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Chen.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cui, X., Zhao, Y. et al. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials. Sci. China Life Sci. 63, 1168–1182 (2020). https://doi.org/10.1007/s11427-020-1725-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1725-0

Keywords

Navigation