Skip to main content
Log in

DNA sequencing: the key to unveiling genome

  • Insight
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Batzer, M.A., and Deininger, P.L. (2002). Alu repeats and human genomic diversity. Nat Rev Genet 3, 370–379.

    Article  CAS  Google Scholar 

  • Bennett, G.M., and Moran, N.A. (2013). Small, smaller, smallest: the origins and evolution of ancient dual symbioses in a phloem-feeding insect. Genome Biol Evol 5, 1675–1688.

    Article  Google Scholar 

  • Bennetzen, J.L., and Wang, H. (2014). The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol, 65, 505–530.

    Article  CAS  Google Scholar 

  • Genovese, G., Handsaker, R.E., Li, H., Altemose, N., Lindgren, A.M., Chambert, K., Pasaniuc, B., Price, A.L., Reich, D., Morton, C.C., et al. (2013). Using population admixture to help complete maps of the human genome. Nat Genet 45, 406–414.

    Article  CAS  Google Scholar 

  • Grant, V. (1975). Genetics of Flowering Plants (New York: Columbia University Press).

    Google Scholar 

  • Hou, Y., and Lin, S. (2009). Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 4, e6978.

    Article  Google Scholar 

  • Brosius, J. (2019). Exaptation at the molecular genetic level. Sci China Life Sci 62, 437–452.

    Article  CAS  Google Scholar 

  • Kellner, M., and Makałowski, W. (2019). Transposable elements significantly contributed to the core promoters in the human genome. Sci China Life Sci 62, 489–497.

    Article  CAS  Google Scholar 

  • Kolmogorov, M., Kennedy, E., Dong, Z., Timp, G., and Pevzner, P.A. (2017). Single-molecule protein identification by sub-nanopore sensors. PLoS Comput Biol 13, e1005356.

    Article  Google Scholar 

  • Koonin, E.V., and Wolf, Y.I. (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36, 6688–6719.

    Article  CAS  Google Scholar 

  • Makino, T., Knowles, D.G., and McLysaght, A. (2010). Functional divergence of duplicated genes. In Evolution after Gene Duplication. (Wiley-Blackwell). pp. 23–30.

    Google Scholar 

  • McHale, L.K., Haun, W.J., Xu, W.W., Bhaskar, P.B., Anderson, J.E., Hyten, D.L., Gerhardt, D.J., Jeddeloh, J.A., and Stupar, R.M. (2012). Structural variants in the soybean genome localize to clusters of biotic stressresponse genes. Plant Physiol 159, 1295–1308.

    Article  CAS  Google Scholar 

  • Messing, J., Bharti, A.K., Karlowski, W.M., Gundlach, H., Kim, H.R., Yu, Y., Wei, F., Fuks, G., Soderlund, C.A., Mayer, K.F.X., et al. (2004). Sequence composition and genome organization of maize. Proc Natl Acad Sci USA 101, 14349–14354.

    Article  CAS  Google Scholar 

  • Platt II, R.N., Vandewege, M.W., and Ray, D.A. (2018). Mammalian transposable elements and their impacts on genome evolution. Chromosome Res 26, 25–43.

    Article  CAS  Google Scholar 

  • Ranz, J., and Clifton, B. (2019). Characterization and evolutionary dynamics of complex regions in eukaryotic genomes. Sci China Life Sci 62, 467–488.

    Article  Google Scholar 

  • Ren, L., Huang, W., Cannon, E.K.S., Bertioli, D.J., and Cannon, S.B. (2018). A mechanism for genome size reduction following genomic rearrangements. Front Genet 9, 454.

    Article  CAS  Google Scholar 

  • Soltis, P.S., Marchant, D.B., Van de Peer, Y., and Soltis, D.E. (2015). Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35, 119–125.

    Article  CAS  Google Scholar 

  • Wenger, A.M., Peluso, P., Rowell, W.J., Chang, P.C., Hall, R.J., Concepcion, G.T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N.D., et al. (2019). Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37, 1155–1162.

    Article  CAS  Google Scholar 

  • Zhang, W., Gao, Y., Long, M., and Shen, B. (2019). Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans. Sci China Life Sci 62, 579–593.

    Article  Google Scholar 

  • Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278–284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehui Huang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Huang, X. DNA sequencing: the key to unveiling genome. Sci. China Life Sci. 63, 1593–1596 (2020). https://doi.org/10.1007/s11427-020-1709-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1709-6

Navigation