Skip to main content

A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs

Abstract

African swine fever (ASF) is a devastating infectious disease in swine that is severely threatening the global pig industry. An efficacious vaccine is urgently required. Here, we used the Chinese ASFV HLJ/18 as a backbone and generated a series of gene-deleted viruses. The virulence, immunogenicity, safety, and protective efficacy evaluation in specific-pathogen-free pigs, commercial pigs, and pregnant sows indicated that one virus, namely HLJ/18-7GD, which has seven genes deleted, is fully attenuated in pigs, cannot convert to the virulent strain, and provides complete protection of pigs against lethal ASFV challenge. Our study shows that HLJ/-18-7GD is a safe and effective vaccine against ASFV, and as such is expected to play an important role in controlling the spread of ASFV.

References

  • Alejo, A., Matamoros, T., Guerra, M., and Andrés, G. (2018). A proteomic atlas of the African swine fever virus particle. J Virol 92, pii: e01293-18.

    Article  Google Scholar 

  • Arias, M., de la Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, R.M., Revilla, Y., Rodriguez, F.J.M., et al. (2017). Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35.

    Article  Google Scholar 

  • Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., Holinka, L.G., Velazquez-Salinas, L., Zhu, J., and Gladue, D.P. (2020a). Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J Virol doi: https://doi.org/10.1128/JVI.02017-19.

    Google Scholar 

  • Borca, M.V., O’Donnell, V., Holinka, L.G., Risatti, G.R., Ramirez-Medina, E., Vuono, E.A., Shi, J., Pruitt, S., Rai, A., Silva, E., et al. (2020b). Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Sci Rep 10, 494.

    CAS  Article  Google Scholar 

  • Coggins, L., Moulton, J.E., and Colgrove, G.S. (1968). Studies with HINDE attenuated African swine fever virus. Cornell Vet 4, 525–540.

    Google Scholar 

  • Gallardo, C., Sánchez, E.G., Pérez-Núñez, D., Nogal, M., de León, P., Carrascosa, Á.L., Nieto, R., Soler, A., Arias, M.L., and Revilla, Y. (2018). African swine fever virus (ASFV) protection mediated by NH/ P68 and NH/P68 recombinant live-attenuated viruses. Vaccine 36, 2694–2704.

    CAS  Article  Google Scholar 

  • Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., et al. (2018). Molecular characterization of African swine fever virus, China, 2018. Emerg Infect Dis 24, 2131–2133.

    Article  Google Scholar 

  • Iglesias, I., Rodríguez, A., Feliziani, F., Rolesu, S., and de la Torre, A. (2017). Spatio-temporal analysis of African swine fever in Sardinia (2012–2014): Trends in domestic pigs and wild boar. Transbound Emerg Dis 64, 656–662.

    CAS  Article  Google Scholar 

  • Jancovich, J.K., Chapman, D., Hansen, D.T., Robida, M.D., Loskutov, A., Craciunescu, F., Borovkov, A., Kibler, K., Goatley, L., King, K., et al. (2018). Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. J Virol 92.

  • Kim, H.J., Cho, K.H., Lee, S.K., Kim, D.Y., Nah, J.J., Kim, H.J., Kim, H.J., Hwang, J.Y., Sohn, H.J., Choi, J.G., et al. (2020). Outbreak of African swine fever in South Korea, 2019. Transbound Emerg Dis doi: https://doi.org/10.1111/tbed.13483.

    Google Scholar 

  • King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D.S., and Drew, T.W. (2003). Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods 107, 53–61.

    CAS  Article  Google Scholar 

  • Krug, P.W., Holinka, L.G., O’Donnell, V., Reese, B., Sanford, B., Fernandez-Sainz, I., Gladue, D.P., Arzt, J., Rodriguez, L., Risatti, G. R., et al. (2015). The progressive adaptation of a Georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J Virol 89, 2324–2332.

    Article  Google Scholar 

  • Le, V.P., Jeong, D.G., Yoon, S.W., Kwon, H.M., Trinh, T.B.N., Nguyen, T. L., Bui, T.T.N., Oh, J., Kim, J.B., Cheong, K.M., et al. (2019). Outbreak of African swine fever, Vietnam, 2019. Emerg Infect Dis 25, 1433–1435.

    Article  Google Scholar 

  • Malmquist, W.A., and Hay, D. (1960). Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 21, 104–108.

    CAS  PubMed  Google Scholar 

  • Monteagudo, P.L., Lacasta, A., López, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M.J., Vidal, E., et al. (2017). BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J Virol 91, pii: e01058-17.

    Article  Google Scholar 

  • Murgia, M.V., Mogler, M., Certoma, A., Green, D., Monaghan, P., Williams, D.T., Rowland, R.R.R., and Gaudreault, N.N. (2019). Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus. Arch Virol 164, 359–370.

    CAS  Article  Google Scholar 

  • O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R., et al. (2015a). African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol 89, 6048–6056.

    Article  Google Scholar 

  • O’Donnell, V., Holinka, L.G., Krug, P.W., Gladue, D.P., Carlson, J., Sanford, B., Alfano, M., Kramer, E., Lu, Z., Arzt, J., et al. (2015b). African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J Virol 89, 8556–8566.

    Article  Google Scholar 

  • O’Donnell, V., Risatti, G.R., Holinka, L.G., Krug, P.W., Carlson, J., Velazquez-Salinas, L., Azzinaro, P.A., Gladue, D.P., and Borca, M.V. (2017). Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol 91, pii: e01760-16.

    Google Scholar 

  • Pejsak, Z., Truszczyński, M., Niemczuk, K., Kozak, E., and Markowska-Daniel, I. (2014). Epidemiology of African swine fever in Poland since the detection of the first case. Polish J Vet Sci 17, 665–672.

    CAS  Article  Google Scholar 

  • Quembo, C.J., Jori, F., Vosloo, W., and Heath, L. (2018). Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis 65, 420–431.

    CAS  Article  Google Scholar 

  • Reed, L.J., and Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.

    Google Scholar 

  • Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P., and Dixon, L.K. (2016). Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34, 4698–4705.

    CAS  Article  Google Scholar 

  • Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton, C.L., Chapman, D.A.G., and Dixon, L.K. (2017). Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J Virol 91, pii: e01428-17.

    Google Scholar 

  • Revilla, Y., Perez-Nunez, D., and Richt, J. A. (2018). African swine fever virus biology and vaccine approaches. Adv Virus Res 100, 41–74.

    Article  Google Scholar 

  • Ribeiro, M., Nunes Petisca, J.L., Lopez Frazao, F., and Sobral, M. (1963). Vaccination contre la pest porcine africaine. Bul Off Internatl Epizoot 60, 921.

    Google Scholar 

  • Sánchez-Vizcaíno, J.M., Mur, L., and Martínez-López, B. (2013). African swine fever (ASF): five years around Europe. Vet Microbiol 165, 45–50.

    Article  Google Scholar 

  • Sánchez, E.G., Pérez-Núñez, D., and Revilla, Y. (2019). Development of vaccines against African swine fever virus. Virus Res 265, 150–155.

    Article  Google Scholar 

  • Sunwoo, S.Y., Pérez-Núñez, D., Morozov, I., Sánchez, E., Gaudreault, N., Trujillo, J., Mur, L., Nogal, M., Madden, D., Urbaniak, K., et al. (2019). DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines 7, 12.

    CAS  Article  Google Scholar 

  • Wade, A., Achenbach, J.E., Gallardo, C., Settypalli, T.B.K., Souley, A., Djonwe, G., Loitsch, A., Dauphin, G., Ngang, J.J.E., Boyomo, O., et al. (2019). Genetic characterization of African swine fever virus in Cameroon, 2010–2018. J Microbiol 57, 316–324.

    CAS  Article  Google Scholar 

  • Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., Li, F., Wang, J., Bu, Z., Rao, Z., et al. (2019). Architecture of African swine fever virus and implications for viral assembly. Science 366, 640–644.

    CAS  Article  Google Scholar 

  • Wen, X., He, X., Zhang, X., Zhang, X., Liu, L., Guan, Y., Zhang, Y., and Bu, Z. (2019). Genome sequences derived from pig and dried, food pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg Microb Infect 8, 303–306.

    CAS  Article  Google Scholar 

  • Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., et al. (2019). Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microb Infect 8, 438–447.

    CAS  Article  Google Scholar 

  • Zsak, L., Caler, E., Lu, Z., Kutish, G.F., Neilan, J.G., and Rock, D.L. (1998). A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J Virol 72, 1028–1035.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Susan Watson for editing the manuscript. This work was supported by the National Key R&D Program of China (2018YFC1200601), Applied Technology Research and Development Project of Heilongjiang Province (GA19B301), Key-Area Research and Development Program of Guangdong Province (2019B020211004), and the grant from the State Key Laboratory of Veterinary Biotechnology Program (SKLVBP201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigao Bu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhao, D., He, X. et al. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Sci. China Life Sci. 63, 623–634 (2020). https://doi.org/10.1007/s11427-020-1657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1657-9

Keywords

  • African swine fever
  • vaccine
  • safety
  • protective efficacy
  • pig