Alejo, A., Matamoros, T., Guerra, M., and Andrés, G. (2018). A proteomic atlas of the African swine fever virus particle. J Virol 92, pii: e01293-18.
Article
Google Scholar
Arias, M., de la Torre, A., Dixon, L., Gallardo, C., Jori, F., Laddomada, A., Martins, C., Parkhouse, R.M., Revilla, Y., Rodriguez, F.J.M., et al. (2017). Approaches and perspectives for development of African swine fever virus vaccines. Vaccines 5, 35.
Article
Google Scholar
Borca, M.V., Ramirez-Medina, E., Silva, E., Vuono, E., Rai, A., Pruitt, S., Holinka, L.G., Velazquez-Salinas, L., Zhu, J., and Gladue, D.P. (2020a). Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J Virol doi: https://doi.org/10.1128/JVI.02017-19.
Google Scholar
Borca, M.V., O’Donnell, V., Holinka, L.G., Risatti, G.R., Ramirez-Medina, E., Vuono, E.A., Shi, J., Pruitt, S., Rai, A., Silva, E., et al. (2020b). Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Sci Rep 10, 494.
CAS
Article
Google Scholar
Coggins, L., Moulton, J.E., and Colgrove, G.S. (1968). Studies with HINDE attenuated African swine fever virus. Cornell Vet 4, 525–540.
Google Scholar
Gallardo, C., Sánchez, E.G., Pérez-Núñez, D., Nogal, M., de León, P., Carrascosa, Á.L., Nieto, R., Soler, A., Arias, M.L., and Revilla, Y. (2018). African swine fever virus (ASFV) protection mediated by NH/ P68 and NH/P68 recombinant live-attenuated viruses. Vaccine 36, 2694–2704.
CAS
Article
Google Scholar
Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., et al. (2018). Molecular characterization of African swine fever virus, China, 2018. Emerg Infect Dis 24, 2131–2133.
Article
Google Scholar
Iglesias, I., Rodríguez, A., Feliziani, F., Rolesu, S., and de la Torre, A. (2017). Spatio-temporal analysis of African swine fever in Sardinia (2012–2014): Trends in domestic pigs and wild boar. Transbound Emerg Dis 64, 656–662.
CAS
Article
Google Scholar
Jancovich, J.K., Chapman, D., Hansen, D.T., Robida, M.D., Loskutov, A., Craciunescu, F., Borovkov, A., Kibler, K., Goatley, L., King, K., et al. (2018). Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. J Virol 92.
Kim, H.J., Cho, K.H., Lee, S.K., Kim, D.Y., Nah, J.J., Kim, H.J., Kim, H.J., Hwang, J.Y., Sohn, H.J., Choi, J.G., et al. (2020). Outbreak of African swine fever in South Korea, 2019. Transbound Emerg Dis doi: https://doi.org/10.1111/tbed.13483.
Google Scholar
King, D.P., Reid, S.M., Hutchings, G.H., Grierson, S.S., Wilkinson, P.J., Dixon, L.K., Bastos, A.D.S., and Drew, T.W. (2003). Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. J Virol Methods 107, 53–61.
CAS
Article
Google Scholar
Krug, P.W., Holinka, L.G., O’Donnell, V., Reese, B., Sanford, B., Fernandez-Sainz, I., Gladue, D.P., Arzt, J., Rodriguez, L., Risatti, G. R., et al. (2015). The progressive adaptation of a Georgian isolate of African swine fever virus to vero cells leads to a gradual attenuation of virulence in swine corresponding to major modifications of the viral genome. J Virol 89, 2324–2332.
Article
Google Scholar
Le, V.P., Jeong, D.G., Yoon, S.W., Kwon, H.M., Trinh, T.B.N., Nguyen, T. L., Bui, T.T.N., Oh, J., Kim, J.B., Cheong, K.M., et al. (2019). Outbreak of African swine fever, Vietnam, 2019. Emerg Infect Dis 25, 1433–1435.
Article
Google Scholar
Malmquist, W.A., and Hay, D. (1960). Hemadsorption and cytopathic effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 21, 104–108.
CAS
PubMed
Google Scholar
Monteagudo, P.L., Lacasta, A., López, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa-Fiz, F., Accensi, F., Navas, M.J., Vidal, E., et al. (2017). BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J Virol 91, pii: e01058-17.
Article
Google Scholar
Murgia, M.V., Mogler, M., Certoma, A., Green, D., Monaghan, P., Williams, D.T., Rowland, R.R.R., and Gaudreault, N.N. (2019). Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus. Arch Virol 164, 359–370.
CAS
Article
Google Scholar
O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, G.R., et al. (2015a). African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J Virol 89, 6048–6056.
Article
Google Scholar
O’Donnell, V., Holinka, L.G., Krug, P.W., Gladue, D.P., Carlson, J., Sanford, B., Alfano, M., Kramer, E., Lu, Z., Arzt, J., et al. (2015b). African swine fever virus Georgia 2007 with a deletion of virulence-associated gene 9GL (B119L), when administered at low doses, leads to virus attenuation in swine and induces an effective protection against homologous challenge. J Virol 89, 8556–8566.
Article
Google Scholar
O’Donnell, V., Risatti, G.R., Holinka, L.G., Krug, P.W., Carlson, J., Velazquez-Salinas, L., Azzinaro, P.A., Gladue, D.P., and Borca, M.V. (2017). Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol 91, pii: e01760-16.
Google Scholar
Pejsak, Z., Truszczyński, M., Niemczuk, K., Kozak, E., and Markowska-Daniel, I. (2014). Epidemiology of African swine fever in Poland since the detection of the first case. Polish J Vet Sci 17, 665–672.
CAS
Article
Google Scholar
Quembo, C.J., Jori, F., Vosloo, W., and Heath, L. (2018). Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis 65, 420–431.
CAS
Article
Google Scholar
Reed, L.J., and Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
Google Scholar
Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P., and Dixon, L.K. (2016). Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34, 4698–4705.
CAS
Article
Google Scholar
Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton, C.L., Chapman, D.A.G., and Dixon, L.K. (2017). Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J Virol 91, pii: e01428-17.
Google Scholar
Revilla, Y., Perez-Nunez, D., and Richt, J. A. (2018). African swine fever virus biology and vaccine approaches. Adv Virus Res 100, 41–74.
Article
Google Scholar
Ribeiro, M., Nunes Petisca, J.L., Lopez Frazao, F., and Sobral, M. (1963). Vaccination contre la pest porcine africaine. Bul Off Internatl Epizoot 60, 921.
Google Scholar
Sánchez-Vizcaíno, J.M., Mur, L., and Martínez-López, B. (2013). African swine fever (ASF): five years around Europe. Vet Microbiol 165, 45–50.
Article
Google Scholar
Sánchez, E.G., Pérez-Núñez, D., and Revilla, Y. (2019). Development of vaccines against African swine fever virus. Virus Res 265, 150–155.
Article
Google Scholar
Sunwoo, S.Y., Pérez-Núñez, D., Morozov, I., Sánchez, E., Gaudreault, N., Trujillo, J., Mur, L., Nogal, M., Madden, D., Urbaniak, K., et al. (2019). DNA-protein vaccination strategy does not protect from challenge with African swine fever virus Armenia 2007 strain. Vaccines 7, 12.
CAS
Article
Google Scholar
Wade, A., Achenbach, J.E., Gallardo, C., Settypalli, T.B.K., Souley, A., Djonwe, G., Loitsch, A., Dauphin, G., Ngang, J.J.E., Boyomo, O., et al. (2019). Genetic characterization of African swine fever virus in Cameroon, 2010–2018. J Microbiol 57, 316–324.
CAS
Article
Google Scholar
Wang, N., Zhao, D., Wang, J., Zhang, Y., Wang, M., Gao, Y., Li, F., Wang, J., Bu, Z., Rao, Z., et al. (2019). Architecture of African swine fever virus and implications for viral assembly. Science 366, 640–644.
CAS
Article
Google Scholar
Wen, X., He, X., Zhang, X., Zhang, X., Liu, L., Guan, Y., Zhang, Y., and Bu, Z. (2019). Genome sequences derived from pig and dried, food pig feed samples provide important insights into the transmission of African swine fever virus in China in 2018. Emerg Microb Infect 8, 303–306.
CAS
Article
Google Scholar
Zhao, D., Liu, R., Zhang, X., Li, F., Wang, J., Zhang, J., Liu, X., Wang, L., Zhang, J., Wu, X., et al. (2019). Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerg Microb Infect 8, 438–447.
CAS
Article
Google Scholar
Zsak, L., Caler, E., Lu, Z., Kutish, G.F., Neilan, J.G., and Rock, D.L. (1998). A nonessential African swine fever virus gene UK is a significant virulence determinant in domestic swine. J Virol 72, 1028–1035.
CAS
Article
Google Scholar