Skip to main content
Log in

TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

An effect of inhibition of tumor necrosis factor-α (TNF-α) on differentiation of mesenchymal stromal cells (MSCs) has been demonstrated, but the exact mechanisms that govern MSCs differentiation remain to be further elucidated. Here, we show that TNF-α inhibits the differentiation of MSCs to sweat glands in a specific sweat gland-inducing environment, accompanied with reduced expression of Nanog, a core pluripotency factor. We elucidated that fat mass and obesity-associated protein (FTO)-mediated m6A demethylation is involved in the regulation of MSCs differentiation potential. Exposure of MSCs to TNF-α reduced expression of FTO, which demethylated Nanog mRNA. Reduced expression of FTO increased Nanog mRNA methylation, decreased Nanog mRNA and protein expression, and significantly inhibited MSCs capacity for differentiation to sweat gland cells. Our finding is the first to elucidate the functional importance of m6A modification in MSCs, providing new insights that the microenvironment can regulate the multipotency of MSCs at the post-transcriptional level. Moreover, to maintain differentiation capacity of MSCs by regulating m6A modification suggested a novel potential therapeutic target for stem cell-mediated regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F. (2015). N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485.

    PubMed  PubMed Central  Google Scholar 

  • Ankrum, J.A., Ong, J.F., and Karp, J.M. (2014). Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32, 252–260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baksh, D., Song, L., and Tuan, R.S. (2004). Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8, 301–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Batista, P.J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D.M., Lujan, E., Haddad, B., Daneshvar, K., et al. (2014). m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan, A.I. (2007). Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213, 341–347.

    CAS  PubMed  Google Scholar 

  • Cheshire, W.P., and Freeman, R. (2003). Disorders of sweating. Semin Neurol 23, 399–406.

    PubMed  Google Scholar 

  • Church, D., Elsayed, S., Reid, O., Winston, B., and Lindsay, R. (2006). Burn wound infections. Clin Microbiol Rev 19, 403–434.

    PubMed  PubMed Central  Google Scholar 

  • Cui, C.Y., and Schlessinger, D. (2015). Eccrine sweat gland development and sweat secretion. Exp Dermatol 24, 644–650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., Sun, G., Lu, Z., Huang, Y., Yang, C.G., et al. (2017). m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18, 2622–2634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206.

    CAS  PubMed  Google Scholar 

  • Dutta, R.C., and Dutta, A.K. (2009). Cell-interactive 3D-scaffold; advances and applications. Biotech Adv 27, 334–339.

    CAS  Google Scholar 

  • Eming, S.A., Krieg, T., and Davidson, J.M. (2007). Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127, 514–525.

    CAS  PubMed  Google Scholar 

  • Evers, L.H., Bhavsar, D., and Mailänder, P. (2010). The biology of burn injury. Exp Dermatol 19, 777–783.

    PubMed  Google Scholar 

  • Fu, X. (2018). Regenerative medicine in China: new advances and hopes. Sci China Life Sci 61, 1135–1136.

    PubMed  Google Scholar 

  • Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15, 293–306.

    CAS  PubMed  Google Scholar 

  • Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A.F., Kol, N., Salmon-Divon, M., Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006.

    CAS  PubMed  Google Scholar 

  • Huang, S., Yao, B., Xie, J., and Fu, X. (2016). 3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration. Acta Biomater 32, 170–177.

    CAS  PubMed  Google Scholar 

  • Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., Gan, J., Jiang, H., Jia, G.F., Luo, C., et al. (2015). Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 43, 373–384.

    CAS  PubMed  Google Scholar 

  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, H.J., Jeong, S.J., Kim, K.N., Baek, I.J., Chang, M., Kang, C.M., Park, Y.S., and Yun, C.W. (2014). A novel protein, Pho92, has a conserved YTH domain and regulates phosphate metabolism by decreasing the mRNA stability of PHO4 in Saccharomyces cerevisiae. Biochem J 457, 391–400.

    CAS  PubMed  Google Scholar 

  • Karageorgiou, V., and Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491.

    CAS  PubMed  Google Scholar 

  • Kretlow, J.D., Jin, Y.Q., Liu, W., Zhang, W.J., Hong, T.H., Zhou, G., Baggett, L.S., Mikos, A.G., and Cao, Y. (2008). Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells. BMC Cell Biol 9, 60.

    PubMed  PubMed Central  Google Scholar 

  • Lacey, D.C., Simmons, P.J., Graves, S.E., and Hamilton, J.A. (2009). Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation. Osteoarthritis Cartilage 17, 735–742.

    CAS  PubMed  Google Scholar 

  • Li, H., Chen, L., Zeng, S., Li, X., Zhang, X., Lin, C., Zhang, M., Xie, S., He, Y., Shu, S., et al. (2015a). Matrigel basement membrane matrix induces eccrine sweat gland cells to reconstitute sweat gland-like structures in nude mice. Exp Cell Res 332, 67–77.

    CAS  PubMed  Google Scholar 

  • Li, H., Li, X., Zhang, M., Chen, L., Zhang, B., Tang, S., and Fu, X. (2015b). Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs. J Mol Hist 46, 431–438.

    CAS  Google Scholar 

  • Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., Huang, H., Nachtergaele, S., Dong, L., Hu, C., et al. (2017). FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31, 127–141.

    PubMed  Google Scholar 

  • Liu, J., Yue, Y., Han, D., Wang, X., Fu, Y., Zhang, L., Jia, G., Yu, M., Lu, Z., Deng, X., et al. (2014). A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 10, 93–95.

    CAS  PubMed  Google Scholar 

  • Lu, C.P., Polak, L., Rocha, A.S., Pasolli, H.A., Chen, S.C., Sharma, N., Blanpain, C., and Fuchs, E. (2012). Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathiyalagan, P., Adamiak, M., Mayourian, J., Sassi, Y., Liang, Y., Agarwal, N., Jha, D., Zhang, S., Kohlbrenner, E., Chepurko, E., et al. (2019). FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, K.D., and Jaffrey, S.R. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15, 313–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12, 459–465.

    CAS  PubMed  Google Scholar 

  • Ouyang, L., Yao, R., Mao, S., Chen, X., Na, J., and Sun, W. (2015). Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation. Biofabrication 7, 044101.

    PubMed  Google Scholar 

  • Phinney, D.G., Kopen, G., Isaacson, R.L., and Prockop, D.J. (1999). Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72, 570–585.

    CAS  PubMed  Google Scholar 

  • Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24, 177–189.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pricola, K.L., Kuhn, N.Z., Haleem-Smith, H., Song, Y., and Tuan, R.S. (2009). Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem 108, 577–588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164, 247–256.

    CAS  PubMed  Google Scholar 

  • Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., and Shimizu, H. (2008). Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180, 2581–2587.

    CAS  PubMed  Google Scholar 

  • Sheng, Z., Fu, X., Cai, S., Lei, Y., Sun, T., Bai, X., and Chen, M. (2009). Regeneration of functional sweat gland-like structures by transplanted differentiated bone marrow mesenchymal stem cells. Wound Repair Regen 17, 427–435.

    PubMed  Google Scholar 

  • Stappenbeck, T.S., and Miyoshi, H. (2009). The role of stromal stem cells in tissue regeneration and wound repair. Science 324, 1666–1669.

    CAS  PubMed  Google Scholar 

  • Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., Deng, X., Wang, Y., Weng, X., Hu, C., et al. (2018). R-2HG exhibits antitumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell 172, 90–105.e23.

    CAS  PubMed  Google Scholar 

  • Sullivan, C.B., Porter, R.M., Evans, C.H., Ritter, T., Shaw, G., Barry, F., and Murphy, J.M. (2014). TNFα and IL-1β influence the differentiation and migration of murine MSCs independently of the NF-κB pathway. Stem Cell Res Ther 5, 104.

    PubMed  PubMed Central  Google Scholar 

  • Tsai, C.C., Su, P.F., Huang, Y.F., Yew, T.L., and Hung, S.C. (2012). Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47, 169–182.

    CAS  PubMed  Google Scholar 

  • Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.

    PubMed  Google Scholar 

  • Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, C.M., Gershowitz, A., and Moss, B. (1975). Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell 4, 379–386.

    CAS  PubMed  Google Scholar 

  • Weinstein, R.A., and Mayhall, C.G. (2003). The epidemiology of burn wound infections: then and now. Clin Infect Dis 37, 543–550.

    Google Scholar 

  • Wu, J., Guo, J., Yang, Y., Jiang, F., Chen, S., Wu, K., Shen, B., Liu, Y., and Du, J. (2017). Tumor necrosis factor α accelerates Hep-2 cells proliferation by suppressing TRPP2 expression. Sci China Life Sci 60, 1251–1259.

    CAS  PubMed  Google Scholar 

  • Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, J., Wang, S., et al. (2017). RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Chen, M., Huang, H., Zhu, J., Song, H., Zhu, J., Park, J., and Ji, S.J. (2018). Dynamic m6A modification regulates local translation of mRNA in axons. Nucleic Acids Res 46, 1412–1423.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., Lv, J., Heng, J., Ding, Y., Xue, Y., et al. (2017). m6A modulates haematopoietic stem and progenitor cell specification. Nature 549, 273–276.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Samanta, D., Lu, H., Bullen, J.W., Zhang, H., Chen, I., He, X., and Semenza, G.L. (2016). Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA 113, E2047–E2056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18–29.

    CAS  PubMed  Google Scholar 

  • Zheng, Y., Nie, P., Peng, D., He, Z., Liu, M., Xie, Y., Miao, Y., Zuo, Z., and Ren, J. (2018). m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res 46, D139–D145.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yang Caiguang at the Shanghai Institute of Materia Medica for providing MA2, Yang Yungui and Yang Ying from the Institute of Genetics, Chinese Academy of Sciences for technical support of MeRIP-qPCR. This work was funded in part by the National Natural Science Foundation of China (81571909, 81721092, 81701906), the National Key R&D Program of China (2017YFC1103300), the Beijing Natural Science Foundation (7174352), and Fostering Funds of Chinese PLA General Hospital for National Distinguished Young Scholar Science Fund (2017-JQPY-002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sha Huang or Xiaobing Fu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. All animal experiments were performed according to the protocols approved by the Ethics Committee at the General Hospital of the People’s Liberation Army and all applicable institutional and/or national guidelines for the care and use of animals were followed.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, R., Yao, B. et al. TNF-α suppresses sweat gland differentiation of MSCs by reducing FTO-mediated m6A-demethylation of Nanog mRNA. Sci. China Life Sci. 63, 80–91 (2020). https://doi.org/10.1007/s11427-019-9826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9826-7

Keywords

Navigation