Dynamic modifications of biomacromolecules: mechanism and chemical interventions

Abstract

Biological macromolecules (proteins, nucleic acids, polysaccharides, etc.) are the building blocks of life, which constantly undergo chemical modifications that are often reversible and spatial-temporally regulated. These dynamic properties of chemical modifications play fundamental roles in physiological processes as well as pathological changes of living systems. The Major Research Project (MRP) funded by the National Natural Science Foundation of China (NSFC)—“Dynamic modifications of biomacromolecules: mechanism and chemical interventions” aims to integrate cross-disciplinary approaches at the interface of chemistry, life sciences, medicine, mathematics, material science and information science with the following goals: (i) developing specific labeling techniques and detection methods for dynamic chemical modifications of biomacromolecules, (ii) analyzing the molecular mechanisms and functional relationships of dynamic chemical modifications of biomacromolecules, and (iii) exploring biomacromolecules and small molecule probes as potential drug targets and lead compounds.

This is a preview of subscription content, access via your institution.

References

  1. Aguzzi, A., and Altmeyer, M. (2016). Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26, 547–558.

    CAS  PubMed  Google Scholar 

  2. Ai, H., Guo, Y., Sun, D., Liu, S., Qi, Y., Guo, J., Qu, Q., Gong, Q., Zhao, S., Li, J., et al. (2019). Examination of the deubiquitylation site selectivity of USP51 by using chemically synthesized ubiquitylated histones. Chembiochem 20, 221–229.

    CAS  PubMed  Google Scholar 

  3. Arrowsmith, C.H., Audia, J.E., Austin, C., Baell, J., Bennett, J., Blagg, J., Bountra, C., Brennan, P.E., Brown, P.J., Bunnage, M.E., et al. (2015). The promise and peril of chemical probes. Nat Chem Biol 11, 536–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bandeira, N., Tsur, D., Frank, A., and Pevzner, P.A. (2007). Protein identification by spectral networks analysis. Proc Natl Acad Sci USA 104, 6140–6145.

    CAS  PubMed  Google Scholar 

  5. Black, J.C., Van Rechem, C., and Whetstine, J.R. (2012). Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48, 491–507.

    CAS  PubMed  Google Scholar 

  6. Bode, A.M., and Dong, Z. (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4, 793–805.

    CAS  PubMed  Google Scholar 

  7. Bunnage, M.E., Chekler, E.L.P., and Jones, L.H. (2013). Target validation using chemical probes. Nat Chem Biol 9, 195–199.

    CAS  PubMed  Google Scholar 

  8. Bunnage, M.E., Gilbert, A.M., Jones, L.H., and Hett, E.C. (2015). Know your target, know your molecule. Nat Chem Biol 11, 368–372.

    CAS  PubMed  Google Scholar 

  9. Casey, P.J. (1995). Protein lipidation in cell signaling. Science 268, 221–225.

    CAS  PubMed  Google Scholar 

  10. Cedar, H., and Bergman, Y. (2009). Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10, 295–304.

    CAS  PubMed  Google Scholar 

  11. Chatterjee, J., and Köhn, M. (2013). Targeting the untargetable: recent advances in the selective chemical modulation of protein phosphatase-1 activity. Curr Opin Chem Biol 17, 361–368.

    CAS  PubMed  Google Scholar 

  12. Chu, G.C., Pan, M., Li, J., Liu, S., Zuo, C., Tong, Z.B., Bai, J.S., Gong, Q., Ai, H., Fan, J., et al. (2019). Cysteine-aminoethylation-assisted chemical ubiquitination of recombinant histones. J Am Chem Soc 141, 3654–3663.

    CAS  PubMed  Google Scholar 

  13. Cohen, P. (2002). The origins of protein phosphorylation. Nat Cell Biol 4, E127–E130.

    CAS  PubMed  Google Scholar 

  14. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.

    CAS  PubMed  Google Scholar 

  16. Davis, B.G. (2004). Mimicking posttranslational modifications of proteins. Science 303, 480–482.

    CAS  PubMed  Google Scholar 

  17. Dawson, M.A., Kouzarides, T., and Huntly, B.J.P. (2012). Targeting epigenetic readers in cancer. N Engl J Med 367, 647–657.

    CAS  PubMed  Google Scholar 

  18. Goldberg, A.D., Allis, C.D., and Bernstein, E. (2001). Epigenetics: a landscape takes shape. Cell 128, 635–638.

    Google Scholar 

  19. Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyl transferases. Annu Rev Biochem 74, 481–514.

    CAS  PubMed  Google Scholar 

  20. Greer, P.L., Hanayama, R., Bloodgood, B.L., Mardinly, A.R., Lipton, D.M., Flavell, S.W., Kim, T.K., Griffith, E.C., Waldon, Z., Maehr, R., et al. (2010). The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating Arc. Cell 140, 704–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gregorich, Z.R., and Ge, Y. (2014). Top-down proteomics in health and disease: challenges and opportunities. Proteomics 14, 1195–1210.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hang, H.C., and Linder, M.E. (2011). Exploring protein lipidation with chemical biology. Chem Rev 111, 6341–6358.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Heim, C., and Binder, E.B. (2012). Current research trends in early life stress and depression: review of human studies on sensitive periods, gene-environment interactions, and epigenetics. Exp Neurol 233, 102–111.

    PubMed  Google Scholar 

  24. Holoch, D., and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16, 71–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ibraheem, A., and Campbell, R.E. (2010). Designs and applications of fluorescent protein-based biosensors. Curr Opin Chem Biol 14, 30–36.

    CAS  PubMed  Google Scholar 

  26. Janke, C., and Chloë Bulinski, J. (2011). Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12, 773–786.

    CAS  PubMed  Google Scholar 

  27. Jones, P.A. (2002). DNA methylation and cancer. Oncogene 21, 5358–5360.

    CAS  PubMed  Google Scholar 

  28. Kochendoerfer, G.G., and Kent, S.B. (1999). Chemical protein synthesis. Curr Opin Chem Biol 3, 665–671.

    CAS  PubMed  Google Scholar 

  29. Li, J., and Chen, P.R. (2016). Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12, 129–137.

    CAS  PubMed  Google Scholar 

  30. Li, J., Kong, H., Huang, L., Cheng, B., Qin, K., Zheng, M., Yan, Z., and Zhang, Y. (2018). Visible light-initiated bioorthogonal photoclick cycloaddition. J Am Chem Soc 140, 14542–14546.

    CAS  PubMed  Google Scholar 

  31. Lin, W., Gao, L., and Chen, X. (2015). Protein-specific imaging of posttranslational modifications. Curr Opin Chem Biol 28, 156–163.

    CAS  PubMed  Google Scholar 

  32. Luo, G.Z., Blanco, M.A., Greer, E.L., He, C., and Shi, Y. (2015). DNA N6-methyladenine: a new epigenetic mark in eukaryotes? Nat Rev Mol Cell Biol 16, 705–710.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Maddika, S., and Chen, J. (2009). Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol 11, 409–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Magi, B., Bargagli, E., Bini, L., and Rottoli, P. (2006). Proteome analysis of bronchoalveolar lavage in lung diseases. Proteomics 6, 6354–6369.

    CAS  PubMed  Google Scholar 

  35. Mann, M., and Jensen, O.N. (2003). Proteomic analysis of post-translational modifications. Nat Biotechnol 21, 255–261.

    CAS  PubMed  Google Scholar 

  36. Moremen, K.W., Tiemeyer, M., and Nairn, A.V. (2012). Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13, 448–462.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ohtsubo, K., and Marth, J.D. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867.

    CAS  PubMed  Google Scholar 

  38. Ooi, S.K.T., and Bestor, T.H. (2008). The colorful history of active DNA demethylation. Cell 133, 1145–1148.

    CAS  PubMed  Google Scholar 

  39. Pan, M., Zheng, Q., Ding, S., Zhang, L., Qu, Q., Wang, T., Hong, D., Ren, Y., Liang, L., Chen, C., et al. (2019). Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K21-linked ubiquitin chains. Angew Chem Int Ed 58, 2627–2631.

    CAS  Google Scholar 

  40. Pettitt, J., Zeitlin, L., Kim, D.H., Working, C., Johnson, J.C., Bohorov, O., Bratcher, B., Hiatt, E., Hume, S.D., Johnson, A.K., et al. (2013). Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci Transl Med 5, 199ra113.

    PubMed  Google Scholar 

  41. Prabakaran, S., Lippens, G., Steen, H., and Gunawardena, J. (2012). Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med 4, 565–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Radivojac, P., Vacic, V., Haynes, C., Cocklin, R.R., Mohan, A., Heyen, J. W., Goebl, M.G., and Iakoucheva, L.M. (2010). Identification, analysis, and prediction of protein ubiquitination sites. Proteins 78, 365–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ramil, C.P., and Lin, Q. (2014). Photoclick chemistry: a fluorogenic light-triggered in vivo ligation reaction. Curr Opin Chem Biol 21, 89–95.

    CAS  PubMed  Google Scholar 

  44. Rix, U., and Superti-Furga, G. (2008). Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5, 616–624.

    Google Scholar 

  45. Ross, C.A., and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat Med 10, S10–S17.

    PubMed  Google Scholar 

  46. Roundtree, I.A., and He, C. (2016). Nuclear m6A reader YTHDC1 regulates mRNA splicing. Trends Genet 32, 320–321.

    CAS  PubMed  Google Scholar 

  47. Rubin, C.S., and Rosen, O.M. (1975). Protein phosphorylation. Annu Rev Biochem 44, 831–887.

    CAS  PubMed  Google Scholar 

  48. Schenone, M., Dančik, V., Wagner, B.K., and Clemons, P.A. (2013). Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9, 232–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Snider, N.T., and Omary, M.B. (2014). Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat Rev Mol Cell Biol 15, 163–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Taira, N., Nihira, K., Yamaguchi, T., Miki, Y., and Yoshida, K. (2007). DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell 25, 725–738.

    CAS  PubMed  Google Scholar 

  51. Walsh, C.T., Garneau-Tsodikova, S., and Gatto, G.J. (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed 44, 7342–7372.

    CAS  Google Scholar 

  52. Wang, J., Liu, Y., Liu, Y., Zheng, S., Wang, X., Zhao, J., Yang, F., Zhang, G., Wang, C., and Chen, P.R. (2019). Time-resolved protein activation by proximal decaging in living systems. Nature 569, 509–513.

    CAS  PubMed  Google Scholar 

  53. Wells, L., Vosseller, K., and Hart, G.W. (2001). Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378.

    CAS  PubMed  Google Scholar 

  54. Wold, F. (1981). In vivo chemical modification of proteins (posttranslational modification). Annu Rev Biochem 50, 783–814.

    CAS  PubMed  Google Scholar 

  55. Xiao, X., Tang, J.J., Peng, C., Wang, Y., Fu, L., Qiu, Z.P., Xiong, Y., Yang, L.F., Cui, H.W., He, X.L., et al. (2011). Cholesterol modification of Smoothened is required for hedgehog signaling. Mol Cell 66, 154–162. 10.

    Google Scholar 

  56. Zentner, G.E., and Henikoff, S. (2013). Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20, 259–266.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hualiang Jiang or Peng R. Chen.

Additional information

Supporting Information

Table S1 List of research projects that have been funded by the Major Research Project at NSFC

The supporting information is available online at http://life.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zou, P., Yang, C. et al. Dynamic modifications of biomacromolecules: mechanism and chemical interventions. Sci. China Life Sci. 62, 1459–1471 (2019). https://doi.org/10.1007/s11427-019-9823-1

Download citation

Keywords

  • chemical biology
  • biomacromolecule
  • dynamic modification
  • modification analysis
  • chemical intervention