Skip to main content
Log in

Genotoxins exaggerate the stressed state of aneuploid embryonic stem cells via activation of autophagy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The cellular consequences of aneuploidy are largely dependent on the cell types examined. Aneuploid yeasts and mouse embryonic fibroblasts exhibit cell proliferation defects and can be selectively inhibited by compounds that cause proteotoxic or energy stress. By contrast, most aneuploid pluripotent stem cells proliferate rapidly and reach higher saturation densities. The responses of aneuploid pluripotent stem cells to the stress-inducing compounds remain uncharacterized. Here, we tested the response of aneuploid embryonic stem cells to several compounds that caused proteotoxic, energy and genotoxic stress using previously established mouse embryonic stem cell lines trisomic for chromosome 6, 8, 11, or 15. Not all trisomic embryonic stem cells were selectively inhibited by compounds that cause proteotoxic or energy stress. However, most of these cells exhibited increased sensitivity to genotoxins. They displayed elevated DNA damage response as characterized by increased γH2A.X foci under genotoxic stress. Further investigations indicated that elevated autophagy levels might contribute to the increased cytotoxic effects of genotoxins on trisomic embryonic stem cells. Our study laid the foundation for eliminating aneuploidy that might be an effective approach for controlling cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilera, A., and Garcia-Muse, T. (2013). Causes of genome instability. Annu Rev Genet 47, 1–32.

    Article  CAS  Google Scholar 

  • Baker, D.E.C., Harrison, N.J., Maltby, E., Smith, K., Moore, H.D., Shaw, P. J., Heath, P.R., Holden, H., and Andrews, P.W. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol 25, 207–215.

    Article  CAS  Google Scholar 

  • Batlle, E., and Clevers, H. (2017). Cancer stem cells revisited. Nat Med 23, 1124–1134.

    Article  CAS  Google Scholar 

  • Ben-David, U., Arad, G., Weissbein, U., Mandefro, B., Maimon, A., Golan-Lev, T., Narwani, K., Clark, A.T., Andrews, P.W., Benvenisty, N., et al. (2014). Aneuploidy induces profound changes in gene expression, proliferation and tumorigenicity of human pluripotent stem cells. Nat Commun 5, 4825.

    Article  CAS  Google Scholar 

  • Blackford, A.N., and Jackson, S.P. (2017). ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell 66, 801–817.

    Article  CAS  Google Scholar 

  • Chen, A.J., Pi, J.K., Hu, J.G., Huang, Y.Z., Gao, H.W., Li, S.F., Li-Ling, J., and Xie, H.Q. (2019). Identification and characterization of two morphologically distinct stem cell subpopulations from human urine samples. Sci China Life Sci 8.

  • Chen, C., Lu, L., Yan, S., Yi, H., Yao, H., Wu, D., He, G., Tao, X., and Deng, X. (2018). Autophagy and doxorubicin resistance in cancer. Anti-Cancer Drugs 29, 1–9.

    Article  Google Scholar 

  • Chunduri, N.K., and Storchova, Z. (2019). The diverse consequences of aneuploidy. Nat Cell Biol 21, 54–62.

    Article  CAS  Google Scholar 

  • Dephoure, N., Hwang, S., O’Sullivan, C., Dodgson, S.E., Gygi, S.P., Amon, A., and Torres, E.M. (2014). Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast. eLife 3, e03023.

    Article  Google Scholar 

  • Fortune, J.M., and Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64, 221–253.

    Article  CAS  Google Scholar 

  • Hassold, T.J., and Jacobs, P.A. (1984). Trisomy in man. Annu Rev Genet 18, 69–97.

    Article  CAS  Google Scholar 

  • Jiang, P., Tang, X., Wang, H., Dai, C., Su, J., Zhu, H., Song, M., Liu, J., Nan, Z., Ru, T., et al. (2019). Collagen-binding basic fibroblast growth factor improves functional remodeling of scarred endometrium in uterine infertile women: a pilot study. Sci China Life Sci 14.

  • Kastenhuber, E.R., and Lowe, S.W. (2017). Putting p53 in context. Cell 170, 1062–1078.

    Article  CAS  Google Scholar 

  • Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9, 1004–1010.

    Article  CAS  Google Scholar 

  • Lee, J.K., Choi, Y.L., Kwon, M., and Park, P.J. (2016). Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol Mech Dis 11, 283–312.

    Article  CAS  Google Scholar 

  • Li, L.B., Chang, K.H., Wang, P.R., Hirata, R.K., Papayannopoulou, T., and Russell, D.W. (2012). Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11, 615–619.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, H., Loring, J., Hormuzdi, S., Disteche, C.M., Bornstein, P., and Jaenisch, R. (1997). Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission. Dev Dyn 209, 85–91.

    Article  CAS  Google Scholar 

  • Lobrich, M., Shibata, A., Beucher, A., Fisher, A., Ensminger, M., Goodarzi, A.A., Barton, O., and Jeggo, P.A. (2010). γH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9, 662–669.

    Article  Google Scholar 

  • Meredith, A.M., and Dass, C.R. (2016). Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism. J Pharm Pharmacol 68, 729–741.

    Article  CAS  Google Scholar 

  • Natarajan, A.T. (2006). Radiosensitivity of cells derived from down syndrome patients: is defective dna repair involved? In DNA Repair and Human Disease. Balajee A.S., ed. (Boston: Springer), pp. 61–66.

    Chapter  Google Scholar 

  • Passerini, V., Ozeri-Galai, E., de Pagter, M.S., Donnelly, N., Schmalbrock, S., Kloosterman, W.P., Kerem, B., and Storchová, Z. (2016). The presence of extra chromosomes leads to genomic instability. Nat Commun 7, 10754.

    Article  CAS  Google Scholar 

  • Pfister, K., Pipka, J.L., Chiang, C., Liu, Y., Clark, R.A., Keller, R., Skoglund, P., Guertin, M.J., Hall, I.M., and Stukenberg, P.T. (2018). Identification of drivers of aneuploidy in breast tumors. Cell Rep 23, 2758–2769.

    Article  CAS  Google Scholar 

  • Ryu, D., Joung, J.G., Kim, N.K.D., Kim, K.T., and Park, W.Y. (2016). Deciphering intratumor heterogeneity using cancer genome analysis. Hum Genet 135, 635–642.

    Article  CAS  Google Scholar 

  • Sachlos, E., Risueño, R.M., Laronde, S., Shapovalova, Z., Lee, J.H., Russell, J., Malig, M., McNicol, J.D., Fiebig-Comyn, A., Graham, M., et al. (2012). Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 149, 1284–1297.

    Article  CAS  Google Scholar 

  • Sansregret, L., and Swanton, C. (2017). The role of aneuploidy in cancer evolution. Cold Spring Harb Perspect Med 7, a028373.

    Article  Google Scholar 

  • Santaguida, S., and Amon, A. (2015). Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat Rev Mol Cell Biol 16, 473–485.

    Article  CAS  Google Scholar 

  • Sheltzer, J.M., Blank, H.M., Pfau, S.J., Tange, Y., George, B.M., Humpton, T.J., Brito, I.L., Hiraoka, Y., Niwa, O., and Amon, A. (2011). Aneuploidy drives genomic instability in yeast. Science 333, 1026–1030.

    Article  CAS  Google Scholar 

  • Shen, H., Chen, X., Li, X., Jia, K., Xiao, Z., and Dai, J. (2019). Transplantation of adult spinal cord grafts into spinal cord transected rats improves their locomotor function. Sci China Life Sci 62, 725–733.

    Article  Google Scholar 

  • Shiloh, Y., and Ziv, Y. (2013). The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14, 197–210.

    Article  CAS  Google Scholar 

  • Simoes-Sousa, S., Littler, S., Thompson, S.L., Minshall, P., Whalley, H., Bakker, B., Belkot, K., Moralli, D., Bronder, D., Tighe, A., et al. (2018). The p38α stress kinase suppresses aneuploidy tolerance by inhibiting HIF-1α. Cell Rep 25, 749–760.e6.

    Article  CAS  Google Scholar 

  • Siu, W.Y., Yam, C.H., and Poon, R.Y.C. (1999). G1 versus G2 cell cycle arrest after adriamycin-induced damage in mouse Swiss3T3 cells. FEBS Lett 461, 299–305.

    Article  CAS  Google Scholar 

  • Stingele, S., Stoehr, G., Peplowska, K., Cox, J., Mann, M., and Storchova, Z. (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol 8, 608.

    Article  Google Scholar 

  • Tacar, O., Sriamornsak, P., and Dass, C.R. (2013). Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65, 157–170.

    Article  CAS  Google Scholar 

  • Tang, Y.C., Williams, B.R., Siegel, J.J., and Amon, A. (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell 144, 499–512.

    Article  CAS  Google Scholar 

  • Tang, Y.C., Yuwen, H., Wang, K., Bruno, P.M., Bullock, K., Deik, A., Santaguida, S., Trakala, M., Pfau, S.J., Zhong, N., et al. (2017). Aneuploid cell survival relies upon sphingolipid homeostasis. Cancer Res 77, 5272–5286.

    Article  CAS  Google Scholar 

  • Thompson, S.L., and Compton, D.A. (2010). Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188, 369–381.

    Article  CAS  Google Scholar 

  • Torres, E.M., Sokolsky, T., Tucker, C.M., Chan, L.Y., Boselli, M., Dunham, M.J., and Amon, A. (2007). Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317, 916–924.

    Article  CAS  Google Scholar 

  • Weaver, B.A.A., and Cleveland, D.W. (2006). Does aneuploidy cause cancer? Curr Opin Cell Biol 18, 658–667.

    Article  CAS  Google Scholar 

  • Werbowetski-Ogilvie, T.E., Bossé, M., Stewart, M., Schnerch, A., Ramos-Mejia, V., Rouleau, A., Wynder, T., Smith, M.J., Dingwall, S., Carter, T., et al. (2009). Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27, 91–97.

    Article  CAS  Google Scholar 

  • Williams, B.R., Prabhu, V.R., Hunter, K.E., Glazier, C.M., Whittaker, C.A., Housman, D.E., and Amon, A. (2008). Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322, 703–709.

    Article  CAS  Google Scholar 

  • Yao, H., Gao, Y., Zhao, J., Zhang, R., Xu, H., Hu, H., Luo, Y., Yuan, Y., Fu, M., Zhang, H., et al. (2019). Genome-wide detection of additional fetal chromosomal abnormalities by cell-free DNA testing of 15,626 consecutive pregnant women. Sci China Life Sci 62, 215–224.

    Article  CAS  Google Scholar 

  • Yoshida, M., Shiojima, I., Ikeda, H., and Komuro, I. (2009). Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J Mol Cell Cardiol 47, 698–705.

    Article  CAS  Google Scholar 

  • Zhang, M., Cheng, L., Jia, Y., Liu, G., Li, C., Song, S., Bradley, A., and Huang, Y. (2016). Aneuploid embryonic stem cells exhibit impaired differentiation and increased neoplastic potential. EMBO J 35, 2285–2300.

    Article  CAS  Google Scholar 

  • Zhu, J., Tsai, H.J., Gordon, M.R., and Li, R. (2018). Cellular stress associated with aneuploidy. Dev Cell 44, 420–431.

    Article  CAS  Google Scholar 

  • Zilfou, J.T., and Lowe, S.W. (2009). Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1, a001883.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0100103 to Y.H.), CAMS Innovation Fund for Medical Sciences (2016-I2M-3-002 to Y.H. and M.Z.), and National Natural Science Foundation of China (31701193 to M. Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meili Zhang or Yue Huang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xiao, R., Liu, G. et al. Genotoxins exaggerate the stressed state of aneuploid embryonic stem cells via activation of autophagy. Sci. China Life Sci. 63, 1026–1036 (2020). https://doi.org/10.1007/s11427-019-9666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9666-y

Keywords

Navigation