Skip to main content
Log in

Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor (CAR) T cell is a novel approach, which utilizes anti-tumor immunity for cancer treatment. As compared to the traditional cell-mediated immunity, CAR-T possesses the improved specificity of tumor antigens and independent cytotoxicity from major histocompatibility complex molecules through a monoclonal antibody in addition to the T-cell receptor. CAR-T cell has proven its effectiveness, primarily in hematological malignancies, specifically where the CD 19 CAR-T cells were used to treat B-cell acute lymphoblastic leukemia and B-cell lymphomas. Nevertheless, there is little progress in the treatment of solid tumors despite the fact that many CAR agents have been created to target tumor antigens such as CEA, EGFR/EGFRvIII, GD2, HER2, MSLN, MUC1, and other antigens. The main obstruction against the progress of research in solid tumors is the tumor microenvironment, in which several elements, such as poor locating ability, immunosuppressive cells, cytokines, chemokines, immunosuppressive checkpoints, inhibitory metabolic factors, tumor antigen loss, and antigen heterogeneity, could affect the potency of CAR-T cells. To overcome these hurdles, researchers have reconstructed the CAR-T cells in various ways. The purpose of this review is to summarize the current research in this field, analyze the mechanisms of the major barriers mentioned above, outline the main solutions, and discuss the outlook of this novel immunotherapeutic modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate-Daga, D., and Davila, M.L. (2016). CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics 3, 16014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aebersold, D.M., Burri, P., Beer, K.T., Laissue, J., Djonov, V., Greiner, R. H., and Semenza, G.L. (2001). Expression of hypoxia-inducible factor-1 alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61, 2911–2916.

    CAS  PubMed  Google Scholar 

  • Ahmed, N., Brawley, V., Hegde, M., Bielamowicz, K., Wakefield, A., Ghazi, A., Ashoori, A., Diouf, O., Gerken, C., Landi, D., et al. (2015). Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a Phase I trial. J Immunother Cancer 3, 011.

    Google Scholar 

  • Ahmed, N., Brawley, V.S., Hegde, M., Robertson, C., Ghazi, A., Gerken, C., Liu, E., Dakhova, O., Ashoori, A., Corder, A., et al. (2015). Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33, 1688–1696.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ajina, A., and Maher, J. (2018). Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 17, 1795–1815.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hilli, Z., Choong, G., Keeney, M.G., Visscher, D.W., Ingle, J.N., Goetz, M.P, and Jakub, J.W. (2019). Metaplastic breast cancer has a poor response to neoadjuvant systemic therapy. Breast Cancer Res Treat 176, 709–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh, D., Trad, M., Hanke, N.T., Larmonier, C.B., Janikashvili, N., Bonnotte, B., Katsanis, E., and Larmonier, N. (2014). Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 74, 104–118.

    CAS  PubMed  Google Scholar 

  • Amrane, K., Ollivier, L., Salaun, P.Y., Metges, J.P., and Abgral, R. (2019). Complete metabolic response assessed by FDG PET/CT to FOLFIRI-Aflibercept in second-line treatment of metastatic colorectal cancer. Clin Nucl Med 1.

    Google Scholar 

  • Avanzi, M.P., Yeku, O., Li, X., Wijewarnasuriya, D.P., van Leeuwen, D.G., Cheung, K., Park, H., Purdon, T.J., Daniyan, A.F., Spitzer, M.H., et al. (2018). Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep 23, 2130–2141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Azimi, M., Aslani, S., Mortezagholi, S., Salek, A., Javan, M.R., Rezaiemanesh, A., Ghaedi, M., Gholamzad, M., and Salehi, E. (2016). Identification, isolation, and functional assay of regulatory T cells. Immunol Invest 45, 584–602.

    CAS  PubMed  Google Scholar 

  • Balkwill, F. (2006). TNF-α in promotion and progression of cancer. Cancer Metast Rev 25, 409–416.

    CAS  Google Scholar 

  • Baniyash, M. (2016). Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy. Cancer Immunol Immunother 65, 857–867.

    PubMed  Google Scholar 

  • Beatty, G.L., Haas, A.R., Maus, M.V., Torigian, D.A., Soulen, M.C., Plesa, G., Chew, A., Zhao, Y., Levine, B.L., Albelda, S.M., et al. (2014). Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce antitumor activity in solid malignancies. Cancer Immunol Res 2, 112–120.

    CAS  PubMed  Google Scholar 

  • Beatty, G.L., and O’Hara, M. (2016). Chimeric antigen receptor-modified T cells for the treatment of solid tumors: defining the challenges and next steps. Pharmacol Therapeutics 166, 30–39.

    CAS  Google Scholar 

  • Becker, C., Fantini, M.C., Wirtz, S., Nikolaev, A., Lehr, H.A., Galle, P.R., Rose-John, S., and Neurath, M.F. (2005). IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4, 217–220.

    CAS  PubMed  Google Scholar 

  • Bedognetti, D., Spivey, T.L., Zhao, Y., Uccellini, L., Tomei, S., Dudley, M. E., Ascierto, M.L., De Giorgi, V., Liu, Q., Delogu, L.G., et al. (2013). CXCR3/CCR5 pathways in metastatic melanoma patients treated with adoptive therapy and interleukin-2. Br J Cancer 109, 2412–2423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Meir, K., Twaik, N., and Baniyash, M. (2018). Plasticity and biological diversity of myeloid derived suppressor cells. Curr Opin Immunol 51, 154–161.

    CAS  PubMed  Google Scholar 

  • Berahovich, R., Liu, X., Zhou, H., Tsadik, E., Xu, S., Golubovskaya, V., and Wu, L. (2019). Hypoxia selectively impairs CAR-T cells in vitro. Cancers 11, 602.

    PubMed Central  Google Scholar 

  • Beury, D.W., Parker, K.H., Nyandjo, M., Sinha, P., Carter, K.A., and Ostrand-Rosenberg, S. (2014). Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors. J Leukocyte Biol 96, 1109–1118.

    PubMed  PubMed Central  Google Scholar 

  • Bhaskara, V.K., Mohanam, I., Rao, J.S., and Mohanam, S. (2012). Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells. PLoS ONE 7, e30905.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brand, A., Singer, K., Koehl, G.E., Kolitzus, M., Schoenhammer, G., Thiel, A., Matos, C., Brass, C., Klobuch, S., Peter, K., et al. (2016). LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab 24, 657–671.

    CAS  PubMed  Google Scholar 

  • Brocker, T., and Karjalainen, K. (1995). Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes.. J Exp Med 181, 1653–1659.

    CAS  PubMed  Google Scholar 

  • Bronte, V., Serafini, P., Mazzoni, A., Segal, D.M., and Zanovello, P. (2003). L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24, 301–305.

    Google Scholar 

  • Bronte, V., and Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 5, 641–654.

    CAS  PubMed  Google Scholar 

  • Brown, C.E., Badie, B., Barish, M.E., Weng, L., Ostberg, J.R., Chang, W. C., Naranjo, A., Starr, R., Wagner, J., Wright, C., et al. (2015). Bioactivity and safety of IL13R2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21, 4062–4072.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, J.M. (1979). Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. Br J Radiol 52, 650–656.

    CAS  PubMed  Google Scholar 

  • Brudno, J.N., Somerville, R.P.T., Shi, V., Rose, J.J., Halverson, D.C., Fowler, D.H., Gea-Banacloche, J.C., Pavletic, S.Z., Hickstein, D.D., Lu, T.L., et al. (2016). Allogeneic T cells that express an anti-CD19 chimeric antigen receptor induce remissions of B-cell malignancies that progress after allogeneic hematopoietic stem-cell transplantation without causing graft-versus-host disease. J Clin Oncol 34, 1112–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunt, S.K., Clements, V.K., Hanson, E.M., Sinha, P., and Ostrand-Rosenberg, S. (2009). Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukocyte Biol 85, 996–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burga, R.A., Thorn, M., Point, G.R., Guha, P., Nguyen, C.T., Licata, L.A., DeMatteo, R.P., Ayala, A., Joseph Espat, N., Junghans, R.P., et al. (2015). Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol Immunother 64, 817–829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burri, P., Djonov, V., Aebersold, D.M., Lindel, K., Studer, U., Altermatt, H. J., Mazzucchelli, L., Greiner, R.H., and Gruber, G. (2003). Significant correlation of hypoxia-inducible factor-1α with treatment outcome in cervical cancer treated with radical radiotherapy. Int J Radiat Oncol Biol Phys 56, 494–501.

    CAS  PubMed  Google Scholar 

  • Byrne, W.L., Mills, K.H.G., Lederer, J.A., and O’Sullivan, G.C. (2011). Targeting regulatory T cells in cancer. Cancer Res 71, 6915–6920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cascone, T., McKenzie, J.A., Mbofung, R.M., Punt, S., Wang, Z., Xu, C., Williams, L.J., Wang, Z., Bristow, C.A., Carugo, A., et al. (2018). Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab 27, 977–987.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervera-Carrascon, V., Siurala, M., Santos, J.M., Havunen, R., Tahtinen, S., Karell, P., Sorsa, S., Kanerva, A., and Hemminki, A. (2018). TNFa and IL-2 armed adenoviruses enable complete responses by anti-PD-1 checkpoint blockade. Oncoimmunology 7, el412902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, D.V., Gibson, H.M., Aufiero, B.M., Wilson, A.J., Hafner, M.S., Mi, Q.S., and Wong, H.K. (2014). Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun 15, 25–32.

    CAS  PubMed  Google Scholar 

  • Chavez-Galan, L., Olleros, M.L., Vesin, D., and Garcia, I. (2015). Much more than M1 and M2 macrophages, there are also CD169 and TCR macrophages. Front Immunol 6.

    Google Scholar 

  • Chekmasova, A.A., Rao, T.D., Nikhamin, Y., Park, K.J., Levine, D.A., Spriggs, D.R., and Brentjens, R.J. (2010). Successful eradication of established peritoneal ovarian tumors in SCID-Beige mice following adoptive transfer of T cells genetically targeted to the MUC16 antigen. Clin Cancer Res 16, 3594–3606.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Li, K., Jiang, H., Song, F., Gao, H., Pan, X., Shi, B., Bi, Y., Wang, H., Wang, H., et al. (2017). Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol Immunother 66, 475–489.

    CAS  PubMed  Google Scholar 

  • Chen, M., Sun, R., Shi, B., Wang, Y., Di, S., Luo, H., Sun, Y., Li, Z., Zhou, M., and Jiang, H. (2019). Antitumor efficacy of chimeric antigen receptor T cells against EGFRvIII-expressing glioblastoma in C57BL/6 mice. Biomed Pharmacother 113, 108734.

    CAS  Google Scholar 

  • Chen, M.L., Pittet, M.J., Gorelik, L., Flavell, R.A., Weissleder, R., von Boehmer, H., and Khazaie, K. (2005). Regulatory T cells suppress tumor-specific CD8+ T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 102, 419–424.

    CAS  PubMed  Google Scholar 

  • Chen, N., Li, X., Chintala, N.K., Tano, Z.E., and Adusumilli, P.S. (2018). Driving CARs on the uneven road of antigen heterogeneity in solid tumors. Curr Opin Immunol 51, 103–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W.J., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and Wahl, S.M. (2003). Conversion of peripheral CD4+ CD25- naive T cells to CD4 CD25 regulatory T cells by TGF-p induction of transcription factor Foxp3. J Exp Med 198, 1875–1886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, W.C., Chu, P.Y., Lee, Y.T., Lu, W.B., Liu, C.Y., Chang, P.M.H., and Yang, M.H. (2017). Pembrolizumab for recurrent/metastatic head and neck squamous cell carcinoma in an Asian population. Medicine 96, e9519.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherkassky, L., Morello, A., Villena-Vargas, J., Feng, Y., Dimitrov, D.S., Jones, D.R., Sadelain, M., and Adusumilli, P.S. (2016). Human CART cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 126, 3130–3144.

    PubMed  PubMed Central  Google Scholar 

  • Chinnasamy, D., Yu, Z., Theoret, M.R., Zhao, Y., Shrimali, R.K., Morgan, R.A., Feldman, S.A., Restifo, N.P., and Rosenberg, S.A. (2010). Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J Clin Invest 120, 3953–3968.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chistiakov, D.A., Bobryshev, Y.V., and Orekhov, A.N. (2015). Changes in transcriptome of macrophages in atherosclerosis. J Cell Mol Med 19, 1163–1173.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chmielewski, M., and Abken, H. (2012). CAR T cells transform to trucks: chimeric antigen receptor-redirected T cells engineered to deliver inducible IL-12 modulate the tumour stroma to combat cancer. Cancer Immunol Immunother 61, 1269–1277.

    CAS  PubMed  Google Scholar 

  • Chmielewski, M., Hahn, O., Rappl, G., Nowak, M., Schmidt-Wolf, I.H., Hombach, A.A., and Abken, H. (2012). T cells that target carcinoembryonic antigen eradicate orthotopic pancreatic carcinomas without inducing autoimmune colitis in mice. Gastroenterology 143, 1095–1107.e2.

    CAS  PubMed  Google Scholar 

  • Chouaib, S., Umansky, V., and Kieda, C. (2018). The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Contemp Oncol (Pozn) 2018(1), 7–13.

    Google Scholar 

  • Columba-Cabezas, S., Serafini, B., Ambrosini, E., Sanchez, M., Penna, G., Adorini, L., and Aloisi, F. (2002). Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 130, 10–21.

    CAS  PubMed  Google Scholar 

  • Corzo, C.A., Condamine, T., Lu, L., Cotter, M.J., Youn, J.I., Cheng, P., Cho, H.I., Celis, E., Quiceno, D.G., Padhya, T, et al. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207, 2439–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craddock, J.A., Lu, A., Bear, A., Pule, M., Brenner, M.K., Rooney, C.M., and Foster, A.E. (2010). Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J Immunother 33, 780–788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curiel, T.J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J.R., Zhang, L., Burow, M., et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10, 942–949.

    CAS  PubMed  Google Scholar 

  • Curran, K.J., Seinstra, B.A., Nikhamin, Y., Yeh, R., Usachenko, Y., van Leeuwen, D.G., Purdon, T., Pegram, H.J., and Brentjens, R.J. (2015). Enhancing antitumor efficacy of chimeric antigen receptor T cells through constitutive CD40L expression. Mol Ther 23, 769–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davila, M.L., Riviere, I., Wang, X., Bartido, S., Park, J., Curran, K., Chung, S.S., Stefanski, J., Borquez-Ojeda, O., Olszewska, M., et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6, 224ra25.

  • Deng, Z., Wu, Y., Ma, W., Zhang, S., and Zhang, Y.Q. (2015). Adoptive T- cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol 16, 1.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dietl, K., Renner, K., Dettmer, K., Timischl, B., Eberhart, K., Dorn, C., Hellerbrand, C., Kastenberger, M., Kunz-Schughart, L.A., Oefner, P.J., et al. (2010). Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. J Immunol 184, 1200–1209.

    CAS  PubMed  Google Scholar 

  • Doedens, A.L., Phan, A.T., Stradner, M.H., Fujimoto, J.K., Nguyen, J.Y, Yang, E., Johnson, R.S., and Goldrath, A.W. (2013). Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat Immunol 14, 1173–1182.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, H., Zhu, G., Tamada, K., and Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5, 1365–1369.

    CAS  PubMed  Google Scholar 

  • Duan, H. (2018). Novel therapeutic strategies for solid tumor based on body’s intrinsic antitumor immune system. Cell Physiol Biochem 47, 441–457.

    CAS  PubMed  Google Scholar 

  • Ebert, L.M., Yu, W., Gargett, T., and Brown, M.P. (2018). Logic-gated approaches to extend the utility of chimeric antigen receptor T-cell technology. Biochem Soc Trans 46, 391–401.

    CAS  PubMed  Google Scholar 

  • Eshhar, Z., Waks, T., Gross, G., and Schindler, D.G. (1993). Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.. Proc Natl Acad Sci USA 90, 720–724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, S.S., Repasky, E.A., and Fisher, D.T. (2015). Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 15, 335–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S.J.C., Hamieh, M., Cunanan, K.M., Odak, A., Gonen, M., and Sadelain, M. (2017). Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ezernitchi, A.Y., Vaknin, I., Cohen-Daniel, L., Levy, O., Manaster, E., Halabi, A., Pikarsky, E., Shapira, L., and Baniyash, M. (2006). TCR ς down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 177, 4763–4772.

    CAS  PubMed  Google Scholar 

  • Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lai, P., Zhang, L., et al. (2011). Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230.

    CAS  PubMed  Google Scholar 

  • Fan, J., Zhang, X., Nie, X., Li, H., Yuan, S., Dai, B., Zhan, J., Wen, Z., Jiang, J., Chen, C., et al. (2020). Nuclear miR-665 aggravates heart failure via suppressing phosphatase and tensin homolog transcription. Sci China Life Sci 63, doi:10.1007/sll427-018-9515-1.

  • Feng, K., Guo, Y., Dai, H., Wang, Y., Li, X., Jia, H., and Han, W. (2016). Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci China Life Sci 59, 468–479.

    CAS  PubMed  Google Scholar 

  • Feng, K., Liu, Y., Guo, Y., Qiu, J., Wu, Z., Dai, H., Yang, Q., Wang, Y., and Han, W. (2017). Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9, 838–847.

    PubMed  PubMed Central  Google Scholar 

  • Feng, K.C., Guo, Y.L., Liu, Y., Dai, H.R., Wang, Y., Lv, H.Y., Huang, J.H., Yang, Q.M., and Han, W.D. (2017). Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol 10, 4.

    PubMed  PubMed Central  Google Scholar 

  • Finney, H.M., Akbar, A.N., and Lawson, A.D.G. (2004). Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRς chain. J Immunol 172, 104–113.

    CAS  PubMed  Google Scholar 

  • Forsberg, E.M.Y., Lindberg, M.F., Jespersen, H., Alsen, S., Bagge, R.O., Donia, M., Svane, I.M., Nilsson, O., Ny, L., Nilsson, L.M., et al. (2019). HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy-resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res 79, 899–904.

    CAS  PubMed  Google Scholar 

  • Foster, A.E., Dotti, G., Lu, A., Khalil, M., Brenner, M.K., Heslop, H.E., Rooney, C.M., and Bollard, C.M. (2008). Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J Immunother 31, 500–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frydrychowicz, M., Boruczkowski, M., Kolecka-Bednarczyk, A., and Dworacki, G. (2017). The dual role of Treg in cancer. Scand J Immunol 86, 436–443.

    CAS  PubMed  Google Scholar 

  • Fujimura, T., Kakizaki, A., Furudate, S., Kambayashi, Y., and Aiba, S. (2016). Tumor-associated macrophages in skin: how to treat their heterogeneity and plasticity. J Dermatol Sci 83, 167–173.

    CAS  PubMed  Google Scholar 

  • Fujimura, T., Kambayashi, Y., Fujisawa, Y., Hidaka, T., and Aiba, S. (2018). Tumor-associated macrophages: therapeutic targets for skin cancer. Front Oncol 8.

  • Gabrilovich, D.I. (2017). Myeloid-derived suppressor cells. Cancer Immunol Res 5, 3–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D.I., Bronte, Y., Chen, S.H., Colombo, M.P., Ochoa, A., Ostrand-Rosenberg, S., and Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res 67, 425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D.I., Ostrand-Rosenberg, S., and Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12, 253–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Li, K., Tu, H., Pan, X., Jiang, H., Shi, B., Kong, J., Wang, H., Yang, S., Gu, J., et al. (2014). Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 20, 6418–6428.

    CAS  PubMed  Google Scholar 

  • Garassino, M.C., Cho, B.C., Kim, J.H., Mazieres, J., Vansteenkiste, J., Lena, H, Corral Jaime, J., Gray, J.E., Powderly, J., Chouaid, C., et al. (2018). Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 19, 521–536.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Hernandez, M.L., Hernandez-Pando, R., Gariglio, P., and Berumen, J. (2002). Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology 105, 231–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner, D., Jeffery, L.E., and Sansom, D.M. (2014). Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 14, 1985–1991.

    CAS  PubMed  Google Scholar 

  • Gardner, R., Finney, O., Smithers, H., Leger, K.J., Annesley, C.E., Summers, C., Brown, C., Mgebroff, S., Lindgren, C., Spratt, K., et al. (2016). CD19CAR T cell products of defined CD4:CD8+ composition and transgene expression show prolonged persistence and durable MRD-negative remission in pediatric and young adult B-cell ALL. Blood 128, 219.

    Google Scholar 

  • Gardner, R., Wu, D., Cherian, S., Fang, M., Hanafi, L.A., Finney, O., Smithers, H., Jensen, M.C., Riddell, S.R., Maloney, D.G., et al. (2016). Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg, A.D., Galluzzi, L., Apetoh, L., Baert, T., Birge, R.B., Bravo-San Pedro, J.M., Breckpot, K., Brough, D., Chaurio, R., Cirone, M., et al. (2015). Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6, 588.

    PubMed  PubMed Central  Google Scholar 

  • Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.Y., Feng, W., Kim, D., Nair, VS., Xu, Y., Khuong, A., Hoang, C.D., et al. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21, 938–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobert, M., Treilleux, I., Bendriss-Vermare, N., Bachelot, T., Goddard-Leon, S., Arfi, V., Biota, C., Doffin, A.C., Durand, I., Olive, D., et al. (2009). Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res 69, 2000–2009.

    CAS  PubMed  Google Scholar 

  • Goff, S.L., Dudley, M.E., Citrin, D.E., Somerville, R.P., Wunderlich, J.R., Danforth, D.N., Zlott, D.A., Yang, J.C., Sherry, R.M., Kammula, U.S., et al. (2016). Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 34, 2389–2397.

    PubMed  PubMed Central  Google Scholar 

  • Golubovskaya, V.M. (2018). GITR domain inside CAR co-stimulates activity of CAR-T cells against cancer. Front Biosci 23, 2245–2254.

    CAS  Google Scholar 

  • Gross, G., Waks, T., and Eshhar, Z. (1989). Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA 86, 10024–10028.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman, W.J., Verbsky, J.W., Barchet, W., Colonna, M., Atkinson, J.R, and Ley, T.J. (2004). Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601.

    CAS  PubMed  Google Scholar 

  • Grupp, S.A., Kalos, M., Barrett, D., Aplenc, R., Porter, D.L., Rheingold, S. R., Teachey, D.T., Chew, A., Hauck, B., Wright, J.F., et al. (2013). Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368, 1509–1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., Feng, K., Liu, Y., Wu, Z., Dai, H., Yang, Q., Wang, Y., Jia, H., and Han, W. (2018). Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res 24, 1277–1286.

    CAS  PubMed  Google Scholar 

  • Hamieh, M., Dobrin, A., Cabriolu, A., van der Stegen, S.J.C., Giavridis, T., Mansilla-Soto, J., Eyquem, J., Zhao, Z., Whitlock, B.M., Miele, M.M., et al. (2019). CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 568, 112–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan, D., and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.

    CAS  PubMed  Google Scholar 

  • Harlin, H., Meng, Y., Peterson, A.C., Zha, Y., Tretiakova, M., Slingluff, C., McKee, M., and Gajewski, T.F. (2009). Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69, 3077–3085.

    CAS  PubMed  Google Scholar 

  • Helsen, C.W., Hammill, J.A., Lau, V.W.C., Mwawasi, K.A., Afsahi, A., Bezverbnaya, K., Newhook, L., Hayes, D.L., Aarts, C., Bojovic, B., et al. (2018). The chimeric TAC receptor co-opts the T cell receptor yielding robust anti-tumor activity without toxicity. Nat Commun 9, 3049.

  • Henon, C., Blay, J.Y., Massard, C., Mir, O., Bahleda, R., Dumont, S., Postel-Vinay, S., Adam, J., Soria, J.C., and Le Cesne, A. (2019). Long lasting major response to pembrolizumab in a thoracic malignant rhabdoid-like SMARCA4-deficient tumor. Ann Oncol 30, 1401–1403.

    CAS  PubMed  Google Scholar 

  • Hillerdal, V., and Essand, M. (2015). Chimeric antigen receptor-engineered T cells for the treatment of metastatic prostate cancer. Biodrugs 29, 75–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmquist-Mengelbier, L., Fredlund, E., Lofstedt, T., Noguera, R., Navarro, S., Nilsson, H., Pietras, A., Vallon-Christersson, J., Borg, A., Gradin, K., et al. (2006). Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2a promotes an aggressive phenotype. Cancer Cell 10, 413–423.

    CAS  PubMed  Google Scholar 

  • Hu, B., Zou, Y., Zhang, L., Tang, J., Niedermann, G., Firat, E., Huang, X., and Zhu, X. (2019). Nucleofection with Plasmid DNA for CRISPR/ Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Human Gene Ther 30, 446–458.

    CAS  Google Scholar 

  • Huang, Q., Xia, J., Wang, L., Wang, X., Ma, X., Deng, Q., Lu, Y., Kumar, M., Zhou, Z., Li, L., et al. (2018). miR-153 suppresses IDOl expression and enhances CAR T cell immunotherapy. J Hematol Oncol 11, 58.

  • Hung, C.F., Xu, X., Li, L., Ma, Y., Jin, Q., Viley, A., Allen, C., Natarajan, P., Shivakumar, R., Peshwa, M.V., et al. (2018). Development of anti- human mesothelin-targeted chimeric antigen receptor messenger RNA-transfected peripheral blood lymphocytes for ovarian cancer therapy. Hum Gene Ther 29, 614–625.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, S.P., Trivers, G.E., Hofseth, L.J., He, P., Shaikh, I., Mechanic, L. E., Doja, S., Jiang, W., Subleski, J., Shorts, L., et al. (2004). Nitric oxide, a mediator of inflammation, suppresses tumorigenesis. Cancer Res 64, 6849–6853.

    CAS  PubMed  Google Scholar 

  • Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11, 3887–3895.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, X., Li, H., Zhang, W., Wang, J., Liang, L., Zou, C., Yu, Z., Liu, S., and Zhang, K.Q. (2020). The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs. Sci China Life Sci 63, doi:10.1007/s11427-018-9437-7.

  • Jiang, Z., Jiang, X., Chen, S., Lai, Y., Wei, X., Li, B., Lin, S., Wang, S., Wu, Q., Liang, Q., et al. (2017). Anti-GPC3-CAR T cells suppress the growth of tumor cells in patient-derived xenografts of hepatocellular carcinoma. Front Immunol 7.

  • Jimenez-Sanchez, A., Memon, D., Pourpe, S., Veeraraghavan, H., Li, Y., Vargas, H.A., Gill, M.B., Park, K.J., Zivanovic, O., Konner, J., et al. (2017). Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927–938.e20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • John, L.B., Devaud, C., Duong, C.P.M., Yong, C.S., Beavis, P.A., Haynes, N.M., Chow, M.T., Smyth, M.J., Kershaw, M.H., and Darcy, P.K. (2013). Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 19, 5636–5646.

    CAS  PubMed  Google Scholar 

  • Jonuleit, H., and Schmitt, E. (2003). The regulatory T cell family: distinct subsets and their interrelations. J Immunol 171, 6323–6327.

    CAS  PubMed  Google Scholar 

  • Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A.H. (2000). Induction of interleukin 10-producing, nonproliferating CD4 T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192, 1213–1222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jonuleit, H., Schmitt, E., Stassen, M., Tuettenberg, A., Knop, J., and Enk, A.H. (2001). Identification and functional characterization of human CD4 CD25 T cells with regulatory properties isolated from peripheral blood. J Exp Med 193, 1285–1294.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, I.Y., Kim, Y.Y., Yu, H.S., Lee, M., Kim, S., and Lee, J. (2018). CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res 78, 4692–4703.

    CAS  PubMed  Google Scholar 

  • Junghans, R.P., Ma, Q., Rathore, R., Gomes, E.M., Bais, A.J., Lo, A.S.Y., Abedi, M., Davies, R.A., Cabral, H.J., Al-Homsi, A.S., et al. (2016). Phase I trial of anti-PSMA designer CAR-T cells in prostate cancer: possible role for interacting interleukin 2-T cell pharmacodynamics as a determinant of clinical response. Prostate 76, 1257–1270.

    CAS  PubMed  Google Scholar 

  • Katz, S.C., Burga, R.A., McCormack, E., Wang, L.J., Mooring, W., Point, G.R., Khare, P.D., Thorn, M., Ma, Q., Stainken, B.F., et al. (2015). Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA liver metastases. Clin Cancer Res 21, 3149–3159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura, K., Bahar, R., Natsume, W., Sakiyama, S., and Tagawa, M. (2002). Secretion of interleukin-10 from murine colon carcinoma cells suppresses systemic antitumor immunity and impairs protective immunity induced against the tumors. Cancer Gene Ther 9, 109–115.

    CAS  PubMed  Google Scholar 

  • Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. (2008). PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26, 677–704.

    CAS  PubMed  Google Scholar 

  • Kerkar, S.P., Goldszmid, R.S., Muranski, P., Chinnasamy, D., Yu, Z., Reger, R.N., Leonardi, A.J., Morgan, R.A., Wang, E., Marincola, F.M., et al. (2011). IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. J Clin Invest 121, 4746–4757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kershaw, M.H., Westwood, J.A., Parker, L.L., Wang, G., Eshhar, Z., Mavroukakis, S.A., White, D.E., Wunderlich, J.R., Canevari, S., Rogers-Freezer, L., et al. (2006). A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 12, 6106–6115.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitayama, J., Nagawa, H., Nakayama, H., Tuno, N., Shibata, Y., and Muto, T. (1999). Functional expression of (31 and p2 integrins on tumor infiltrating lymphocytes (TILs) in colorectal cancer. J Gastroenterol 34, 327–333.

    CAS  PubMed  Google Scholar 

  • Kitayama, J., Tuno, N., Nakayama, H., Shibata, Y., Muto, T., and Nagawa, H. (1999). Functional down-regulation ofpl andp2 integrins on lamina propria lymphocytes (LPL) and tumor-infiltrating lymphocytes (TIL) in colorectal cancer patients. Ann Surg Oncol 6, 500–506.

    CAS  PubMed  Google Scholar 

  • Klebanoff, C.A., Scott, C.D., Leonardi, A.J., Yamamoto, T.N., Cruz, A.C., Ouyang, C., Ramaswamy, M., Roychoudhuri, R., Ji, Y., Eil, R.L., et al. (2016). Memory T cell-driven differentiation of naive cells impairs adoptive immunotherapy. J Clin Invest 126, 318–334.

    PubMed  Google Scholar 

  • Kloss, C.C., Lee, J., Zhang, A., Chen, F., Melenhorst, J.J., Lacey, S.F., Maus, M.Y., Fraietta, J.A., Zhao, Y., and June, C.H. (2018). Dominant-negative TGF-p receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol Ther 26, 1855–1866.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knochelmann, H.M., Smith, A.S., Dwyer, C.J., Wyatt, M.M., Mehrotra, S., and Paulos, C.M. (2018). CAR T cells in solid tumors: blueprints for building effective therapies. Front Immunol 9, 1740.

  • Knoechel, B., Lohr, J., Kahn, E., Bluestone, J.A., and Abbas, A.K. (2005). Sequential development of interleukin 2-dependent effector and regulatory T cells in response to endogenous systemic antigen. J Exp Med 202, 1375–1386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo, A., Yamashita, T., Tamura, H., Zhao, W., Tsuji, T., Shimizu, M., Shinya, E., Takahashi, H., Tamada, K., Chen, L., et al. (2010). Interferon-γ and tumor necrosis factor-α induce an immunoinhibitory molecule, B7-H1, via nuclear factor-κB activation in blasts in myelodysplastic syndromes. Blood 116, 1124–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koneru, M., Purdon, T.J., Spriggs, D., Koneru, S., and Brentjens, R.J. (2015). IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446.

    PubMed  PubMed Central  Google Scholar 

  • Krenciute, G., Prinzing, B.L., Yi, Z., Wu, M.F., Liu, H., Dotti, G., Balyasnikova, I.Y., and Gottschalk, S. (2017). Transgenic expression of IL15 improves antiglioma activity of IL13Ra2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 5, 571–581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Davra, Y., E. Obr, A., Geng, K. L., Wood, T., De Lorenzo, M.S., and Birge, R.B. (2017). Crk adaptor protein promotes PD-L1 expression, EMT and immune evasion in a murine model of triplenegative breast cancer. Oncoimmunology 7, e1376155.

    PubMed  PubMed Central  Google Scholar 

  • Lacy, M.Q., Jacobus, S., Blood, E.A., Kay, N.E., Rajkumar, S.Y., and Greipp, P.R. (2009). Phase II study of interleukin-12 for treatment of plateau phase multiple myeloma (E1A96): a trial of the Eastern Cooperative Oncology Group. Leukemia Res 33, 1485–1489.

    CAS  Google Scholar 

  • Lamers, C.H.J., Sleijfer, S., Vulto, A.G., Kruit, W.H.J., Kliffen, M., Debets, R., Gratama, J.W., Stoter, G., and Oosterwijk, E. (2006). Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol 24, e20–e22.

    PubMed  Google Scholar 

  • Lamers, C.H.J., Klaver, Y., Gratama, J.W., Sleijfer, S., and Debets, R. (2016). Treatment of metastatic renal cell carcinoma (mRCC) with CAIX CAR-engineered T-cells—a completed study overview. Biochem Soc Trans 44, 951–959.

    CAS  PubMed  Google Scholar 

  • Lamers, C.H., Sleijfer, S., van Steenbergen, S., van Elzakker, P., van Krimpen, B., Groot, C., Vulto, A., den Bakker, M., Oosterwijk, E., Debets, R., et al. (2013). Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21, 904–912.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, G., Li, J., Wen, Q., Lin, L., Chen, L., Chen, L., and Chen, X. (2018). Cytotoxic T lymphocyte associated antigen 4 expression predicts poor prognosis in luminal B HER2-negative breast cancer. Oncol Lett.

    Google Scholar 

  • Lee, D.W., Kochenderfer, J.N., Stetler-Stevenson, M., Cui, Y.K., Delbrook, C., Feldman, S.A., Fry, T.J., Orentas, R., Sabatino, M., Shah, N.N., et al. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528.

    CAS  PubMed  Google Scholar 

  • Lee, J.H., Lee, J.H., Lim, Y.S., Yeon, J.E., Song, T.J., Yu, S.J., Gwak, G.Y., Kim, K.M., Kim, Y.J., Lee, J.W., et al. (2015). Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 148, 1383–1391.e6.

    CAS  PubMed  Google Scholar 

  • Leen, A.M., Sukumaran, S., Watanabe, N., Mohammed, S., Keirnan, J., Yanagisawa, R., Anurathapan, U., Rendon, D., Heslop, H.E., Rooney, C.M., et al. (2014). Reversal of tumor immune inhibition using a chimeric cytokine receptor. Mol Ther 22, 1211–1220.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard, J.P, Sherman, M.L., Fisher, G.L., Buchanan, L.J., Larsen, G., Atkins, M.B., Sosman, J.A., Dutcher, J.P., Vogelzang, N.J., and Ryan J. L. (1997). Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541–2548.

    CAS  PubMed  Google Scholar 

  • Li, H., and Zhao, Y. (2017). Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell 8, 573–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Guo, L., Rathi, P., Marinova, E., Gao, X., Wu, M.F., Liu, H., Dotti, G., Gottschalk, S., Metelitsa, L.S., et al. (2017). Redirecting T cells to Glypican-3 with 4-IBB zeta chimeric antigen receptors results in Thl polarization and potent antitumor activity. Hum Gene Ther 28, 437–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ligtenberg, M.A., Mougiakakos, D., Mukhopadhyay, M., Witt, K., Lladser, A., Chmielewski, M., Riet, T., Abken, H., and Kiessling, R. (2016). Coexpressed catalase protects chimeric antigen receptor-redirected T cells as well as bystander cells from oxidative stress-induced loss of antitumor activity. J Immunol 196, 759–766.

    CAS  PubMed  Google Scholar 

  • Lim, T.S., Chew, Y., Sieow, J.L., Goh, S., Yeong, J.P.S., Soon, A.L., and Ricciardi-Castagnoli, P. (2016). PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology 5, e1085146.

    PubMed  Google Scholar 

  • Liu, H., Xu, Y., Xiang, J., Long, L., Green, S., Yang, Z., Zimdahl, B., Lu, J., Cheng, N., Horan, L.H., et al. (2017). Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res 23, 478–488.

    CAS  PubMed  Google Scholar 

  • Liu, V.C., Wong, L.Y., Jang, T., Shah, A.H., Park, I., Yang, X., Zhang, Q., Lonning, S., Teicher, B.A., and Lee, C. (2007). Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-p. J Immunol 178, 2883–2892.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., and Lv, L. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. J Cell Biochem 111, 554–563.

    CAS  PubMed  Google Scholar 

  • Liyanage, U.K., Moore, T.T., Joo, H.G., Tanaka, Y., Herrmann, Y., Doherty, G., Drebin, J.A., Strasberg, S.M., Eberlein, T.J., Goedegebuure, P.S., et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169, 2756–2761.

    CAS  PubMed  Google Scholar 

  • Louis, C.U., Savoldo, B., Dotti, G., Pule, M., Yvon, E., Myers, G.D., Rossig, C., Russell, H.Y., Diouf, O., Liu, E., et al. (2011). Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118, 6050–6056.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, T., Ramakrishnan, R., Altiok, S., Youn, J.I., Cheng, P., Celis, E., Pisarev, Y., Sherman, S., Sporn, M.B., and Gabrilovich, D. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121, 4015–4029.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y.J., Chu, H., Wheeler, L.W., Nelson, M., Westrick, E., Matthaei, J.F., Cardie, I.I., Johnson, A., Gustafson, J., Parker, N., et al. (2019). Preclinical evaluation of bispecific adaptor molecule controlled folate receptor CAR-T cell therapy with special focus on pediatric malignancies. Front Oncol 9, 151.

    PubMed  PubMed Central  Google Scholar 

  • Ma, Q., Gomes, E.M., Lo, A.S.Y., and Junghans, R.P. (2014). Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy. Prostate 74, 286–296.

    CAS  PubMed  Google Scholar 

  • Ma, Y., Adjemian, S., Mattarollo, S.R., Yamazaki, T., Aymeric, L., Yang, H., Portela Catani, J.P, Hannani, D., Duret, H., Steegh, K., et al. (2013). Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 38, 729–741.

    CAS  PubMed  Google Scholar 

  • Majzner, R.G., Heitzeneder, S., and Mackall, C.L. (2017). Harnessing the immunotherapy revolution for the treatment of childhood cancers. Cancer Cell 31, 476–485.

    CAS  PubMed  Google Scholar 

  • Majzner, R.G., and Mackall, C.L. (2018). Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8, 1219–1226.

    CAS  PubMed  Google Scholar 

  • Majzner, R.G., Theruvath, J.L., Nellan, A., Heitzeneder, S., Cui, Y., Mount, C.W., Rietberg, S.P., Linde, M.H., Xu, P., Rota, C., et al. (2019). CART cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res 25, 2560–2574.

    PubMed  PubMed Central  Google Scholar 

  • Maliar, A., Servais, C., Waks, T., Chmielewski, M., Lavy, R., Altevogt, R., Abken, H., and Eshhar, Z. (2012). Redirected T cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 143, 1375–1384.e5.

    CAS  PubMed  Google Scholar 

  • Mantovani, A., Garlanda, C., and Locati, M. (2009). Macrophage diversity and polarization in atherosclerosis. Arterioscler Thromb Vase Biol 29, 1419–1423.

    CAS  Google Scholar 

  • Mantovani, A., Sica, A., and Locati, M. (2005). Macrophage polarization comes of age. Immunity 23, 344–346.

    CAS  PubMed  Google Scholar 

  • Marcucci, F., Rumio, C., and Corti, A. (2017). Tumor cell-associated immune checkpoint molecules—drivers of malignancy and sternness. Biochim Biophys Acta Rev Cancer 1868, 571–583.

    CAS  PubMed  Google Scholar 

  • Marigo, I., Bosio, E., Solito, S., Mesa, C., Fernandez, A., Dolcetti, L., Ugel, S., Sonda, N., Bicciato, S., Falisi, E., et al. (2010). Tumor-induced tolerance and immune suppression depend on the C/EBPp transcription factor. Immunity 32, 790–802.

    CAS  PubMed  Google Scholar 

  • Marmarelis, M.E., and Aggarwal, C. (2018). Combination immunotherapy in non-small cell lung cancer. Curr Oncol Rep 20, 55.

    PubMed  Google Scholar 

  • Martinet, L., Le Guellec, S., Filleron, T., Lamant, L., Meyer, N., Rochaix, P., Garrido, I., and Girard, J.P (2012). High endothelial venules (HEVs) in human melanoma lesions. Oncoimmunology 1, 829–839.

    PubMed  PubMed Central  Google Scholar 

  • Martinez, M., and Moon, E.K. (2019). CAR T cells for solid tumors: new strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 10, 128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N.J., Chew, A., Gonzalez, V.E., Zheng, Z., Lacey, S.F., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371, 1507–1517.

    PubMed  PubMed Central  Google Scholar 

  • Maude, S.L., Laetsch, T.W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., Bader, P., Verneris, M.R., Stefanski, H.E., Myers, G.D., et al. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378, 439–448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maus, M.V., Haas, A.R., Beatty, G.L., Albelda, S.M., Levine, B.L., Liu, X., Zhao, Y., Kalos, M., and June, C.H. (2013). T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol Res 1, 26–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meirow, Y., and Baniyash, M. (2017). Immune biomarkers for chronic inflammation related complications in non-cancerous and cancerous diseases. Cancer Immunol Immunother 66, 1089–1101.

    CAS  PubMed  Google Scholar 

  • Menger, L., Sledzinska, A., Bergerhoff, K., Vargas, F.A., Smith, J., Poirot, L., Pule, M., Hererro, J., Peggs, K.S., and Quezada, S.A. (2016). TALEN-mediated inactivation of PD-1 in tumor-reactive lymphocytes promotes intratumoral T-cell persistence and rejection of established tumors. Cancer Res 76, 2087–2093.

    CAS  PubMed  Google Scholar 

  • Miao, Z.F., Zhao, T.T., Wang, Z.N., Xu, Y.Y., Mao, X.Y., Wu, J.H., Liu, X. Y., Xu, H., You, Y., and Xu, H.M. (2014). Influence of different hypoxia models on metastatic potential of SGC-7901 gastric cancer cells. Tumor Biol 35, 6801–6808.

    CAS  Google Scholar 

  • Mikucki, M.E., Fisher, D.T., Matsuzaki, I., Skitzki, J.J., Gaulin, N.B., Muhitch, J.B., Ku, A.W., Frelinger, J.G., Odunsi, K., Gajewski, T.F., et al. (2015). Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun 6, 7458.

    CAS  PubMed  Google Scholar 

  • Mirzaei, H.R., Rodriguez, A., Shepphird, J., Brown, C.E., and Badie, B. (2017). Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol 8, 1850.

    PubMed  PubMed Central  Google Scholar 

  • Miyara, M., and Sakaguchi, S. (2011). Human FoxP3+CD4+ regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89, 346–351.

    CAS  PubMed  Google Scholar 

  • Mlecnik, B., Tosolini, M., Charoentong, P., Kirilovsky, A., Bindea, G., Berger, A., Camus, M., Gillard, M., Bruneval, P., Fridman, W.H., et al. (2010). Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138, 1429–1440.

    CAS  PubMed  Google Scholar 

  • Molon, B., Ugel, S., Del Pozzo, F., Soldani, C., Zilio, S., Avella, D., De Palma, A., Mauri, P.L., Monegal, A., Rescigno, M., et al. (2011). Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med 208, 1949–1962.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moon, E.K., Carpenito, C., Sun, J., Wang, L.C.S., Kapoor, V., Predina, J., Powell, D.J., Riley, J.L., June, C.H., and Albelda, S.M. (2011). Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res 17, 4719–4730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., De Baetselier, P., and Van Ginderachter, J. A. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233–4244.

    CAS  PubMed  Google Scholar 

  • Mullins, I.M., Slingluff, C.L., Lee, J.K., Garbee, C.F., Shu, J., Anderson, S. G., Mayer, M.E., Knaus, W.A., and Mullins, D.W. (2004). CXC chemokine receptor 3 expression by activated CD8+ T cells is associated with survival in melanoma patients with stage III disease. Cancer Res 64, 7697–7701.

    CAS  PubMed  Google Scholar 

  • Muniappan, A., Banapour, B., Lebkowski, J., and Talib, S. (2000). Ligand-mediated cytolysis of tumor cells: use of heregulin-ς chimeras to redirect cytotoxic T lymphocytes. Cancer Gene Ther 7, 128–134.

    CAS  PubMed  Google Scholar 

  • Murad, J.P., Kozlowska, A.K., Lee, H.J., Ramamurthy, M., Chang, W.C., Yazaki, P., Colcher, D., Shively, J., Cristea, M., Forman, S.J., et al. (2018). Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 9, 2268.

    PubMed  PubMed Central  Google Scholar 

  • Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., Herber, D.L., Schneck, J., and Gabrilovich, D.I. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13, 828–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nedoszytko, B., Sokolowska-Wojdylo, M., Renke, J., Lange, M., Trzonkowski, P., Sobjanek, M., Szczerkowska-Dobosz, A., Niedoszytko, M., Gorska, A., Romantowski, J., et al. (2017). The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part III: Polymorphisms of genes involved in Tregs’ activation and function. Postepy Dermatol Alergol 34, 517–525.

    PubMed  Google Scholar 

  • Neelapu, S.S., Tummala, S., Kebriaei, P., Wierda, W., Gutierrez, C., Locke, F.L., Komanduri, K.V., Lin, Y., Jain, N., Daver, N., et al. (2018). Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat Rev Clin Oncol 15, 47–62.

    CAS  PubMed  Google Scholar 

  • Nishida, N., and Kudo, M. (2018). Immune checkpoint blockade for the treatment of human hepatocellular carcinoma. Hepatol Res 48, 622–634.

    CAS  PubMed  Google Scholar 

  • Noman, M.Z., Janji, B., Hu, S., Wu, J.C., Martelli, F., Bronte, V., and Chouaib, S. (2015). Tumor-promoting effects of myeloid-derived suppressor cells are potentiated by hypoxia-induced expression of miR-210. Cancer Res 75, 3771–3787.

    CAS  PubMed  Google Scholar 

  • O’Rourke, D.M., Nasrallah, M.L.P, Desai, A., Melenhorst, J.J., Mansfield, K., Morrissette, J.J.D., Martinez-Lage, M., Brem, S., Maloney, E., Shen, A., et al. (2017). A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9, eaaa0984.

    PubMed  PubMed Central  Google Scholar 

  • Odorizzi, P.M., Pauken, K.E., Paley, M.A., Sharpe, A., and Wherry, E.J. (2015). Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 212, 1125–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ornstein, M.C., Diaz-Montero, C.M., Rayman, P., Elson, P., Haywood, S., Finke, J.H., Kim, J.S., Pavicic Jr, P.G., Lamenza, M., Devonshire, S., et al. (2018). Myeloid-derived suppressors cells (MDSC) correlate with clinicopathologic factors and pathologic complete response (pCR) in patients with urothelial carcinoma (UC) undergoing cystectomy. Urol Oncol 36, 405–412.

    CAS  PubMed  Google Scholar 

  • Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12, 252–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parente-Pereira, A.C., Burnet, J., Ellison, D., Foster, J., Davies, D.M., van der Stegen, S., Burbridge, S., Chiapero-Stanke, L., Wilkie, S., Mather, S., et al. (2011). Trafficking of CAR-engineered human T cells following regional or systemic adoptive transfer in SCID beige mice. J Clin Immunol 31, 710–718.

    CAS  PubMed  Google Scholar 

  • Parente-Pereira, A.C., Whilding, L.M., Brewig, N., van der Stegen, S.J.C, Davies, D.M., Wilkie, S., van Schalkwyk, M.C.I., Ghaem-Maghami, S., and Maher, J. (2013). Synergistic chemoimmunotherapy of epithelial ovarian cancer using ErbB-retargeted T cells combined with carboplatin. J Immunol 191, 2437–2445.

    CAS  PubMed  Google Scholar 

  • Park, J.R., Digiusto, D.L., Slovak, M., Wright, C., Naranjo, A., Wagner, J., Meechoovet, H.B., Bautista, C., Chang, W.C., Ostberg, J.R., et al. (2007). Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther 15, 825–833.

    CAS  PubMed  Google Scholar 

  • Pegram, H.J., Lee, J.C., Hayman, E.G., Imperato, G.H., Tedder, T.F., Sadelain, M., and Brentjens, R.J. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133–4141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pena-Cruz, V., McDonough, S.M., Diaz-Griffero, F., Crum, C.P., Carrasco, R.D., and Freeman, G.J. (2010). PD-1 on immature and PD-1 ligands on migratory human Langerhans cells regulate antigen-presenting cell activity. J Invest Dermatol 130, 2222–2230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peter, M.E., Hadji, A., Murmann, A.E., Brockway, S., Putzbach, W., Pattanayak, A., and Ceppi, P. (2015). The role of CD95 and CD95 ligand in cancer. Cell Death Differ 22, 549–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pituch, K.C., Miska, J., Krenciute, G., Panek, W.K., Li, G., Rodriguez-Cruz, T, Wu, M., Han, Y., Lesniak, M.S., Gottschalk, S., et al. (2018). Adoptive transfer of IL13Ra2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma. Mol Ther 26, 986–995.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter, D.L., Levine, B.L., Kalos, M., Bagg, A., and June, C.H. (2011). Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365, 725–733.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posey Jr, A.D., Schwab, R.D., Boesteanu, A.C., Steentoft, C., Mandel, U., Engels, B., Stone, J.D., Madsen, T.D., Schreiber, K., Haines, K.M., et al. (2016). Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44, 1444–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pule, M.A., Savoldo, B., Myers, G.D., Rossig, C., Russell, H.V., Dotti, G., Huls, M.H., Liu, E., Gee, A.P., Mei, Z., et al. (2008). Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 14, 1264–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Punt, C.J.A., Koopman, M., and Vermeulen, L. (2017). From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 14, 235–246.

    CAS  PubMed  Google Scholar 

  • Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, X., Tang, Y., and Hua, S. (2018). Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol 9, 563.

    PubMed  PubMed Central  Google Scholar 

  • Quintarelli, C., Orlando, D., Boffa, I., Guercio, M., Polito, V.A., Petretto, A., Lavarello, C., Sinibaldi, M., Weber, G., Del Bufalo, F., et al. (2018). Choice of costimulatory domains and of cytokines determines CAR T-cell activity in neuroblastoma. Oncoimmunology 7, e1433518.

    PubMed  PubMed Central  Google Scholar 

  • Qureshi, O.S., Zheng, Y., Nakamura, K., Attridge, K., Manzotti, C., Schmidt, E.M., Baker, J., Jeffery, L.E., Kaur, S., Briggs, Z., et al. (2011). Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rafiq, S., Yeku, O.O., Jackson, H.J., Purdon, T.J., van Leeuwen, D.G., Drakes, D.J., Song, M., Miele, M.M., Li, Z., Wang, P., et al. (2018). Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol 36, 847–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan, R., Huang, C., Cho, H.I., Lloyd, M., Johnson, J., Ren, X., Altiok, S., Sullivan, D., Weber, J., Celis, E., et al. (2012). Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res 72, 5483–5493.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riese, M.J., Wang, L.C.S., Moon, E.K., Joshi, R.P., Ranganathan, A., June, C.H., Koretzky, G.A., and Albelda, S.M. (2013). Enhanced effector responses in activated CD8 T cells deficient in diacylglycerol kinases. Cancer Res 73, 3566–3577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, P.C., Quiceno, D.G., and Ochoa, A.C. (2007). L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rofstad, E.K., Gaustad, J.V., Egeland, T.A.M., Mathiesen, B., and Galappathi, K. (2010). Tumors exposed to acute cyclic hypoxic stress show enhanced angiogenesis, perfusion and metastatic dissemination. Int J Cancer 127, 1535–1546.

    CAS  PubMed  Google Scholar 

  • Ruella, M., Klichinsky, M., Kenderian, S.S., Shestova, O., Ziober, A., Kraft, D.O., Feldman, M., Wasik, M.A., June, C.H., and Gill, S. (2017). Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma using chimeric antigen receptor T cells. Cancer Discov 7, 1154–1167.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rupp, L.J., Schumann, K., Roybal, K.T., Gate, R.E., Ye, C.J., Lim, W.A., and Marson, A. (2017). CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7, 737.

  • Sabaawy, H.E. (2013). Genetic heterogeneity and clonal evolution of tumor cells and their impact on precision cancer medicine. J Leuk 01.

    Google Scholar 

  • Sadelain, M. (2016). Tales of antigen evasion from CAR therapy. Cancer Immunol Res 4, 473.

    PubMed  Google Scholar 

  • Sadelain, M., Brentjens, R., and Riviere, I. (2013). The basic principles of chimeric antigen receptor design. Cancer Discov 3, 388–398.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadelain, M., Riviere, I., and Brentjens, R. (2003). Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 3, 35–45.

    CAS  PubMed  Google Scholar 

  • Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T cells and immune tolerance. Cell 133, 775–787.

    CAS  PubMed  Google Scholar 

  • Sanmamed, M.F., and Chen, L. (2014). Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 20, 256–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santer, F.R., Malinowska, K., Culig, Z., and Cavarretta, I.T. (2010). Interleukin-6 trans-signalling differentially regulates proliferation, migration, adhesion and maspin expression in human prostate cancer cells. Endocr Relat Cancer 17, 241–253.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoni, M., Massari, F., Amantini, C., Nabissi, M., Maines, F., Burattini, L., Berardi, R., Santoni, G., Montironi, R., Tortora, G., et al. (2013). Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 62, 1757–1768.

    CAS  PubMed  Google Scholar 

  • Sapoznik, S., Ortenberg, R., Galore-Haskel, G., Kozlovski, S., Levy, D., Avivi, C., Barshack, I., Cohen, C.J., Besser, M.J., Schachter, J., et al. (2012). CXCR1 as a novel target for directing reactive T cells toward melanoma: implications for adoptive cell transfer immunotherapy. Cancer Immunol Immunother 61, 1833–1847.

    CAS  PubMed  Google Scholar 

  • Saw, P.E., and Song, E.W. (2020). siRNA therapeutics: a clinical reality. Sci China Life Sci 63, doi:10.1007/s11427-018-9438-y.

  • Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J.E., Abe, J., Shono, Y., Kitabatake, M., Kakimi, K., Mukaida, N., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111, 5457–5466.

    CAS  PubMed  Google Scholar 

  • Schadendorf, D., Hodi, F.S., Robert, C., Weber, J.S., Margolin, K., Hamid, O., Part, D., Chen, T.T., Berman, D.M., and Wolchok, J.D. (2015). Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33, 1889–1894.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuberth, P.C., Hagedorn, C., Jensen, S.M., Gulati, P., van den Broek, M., Mischo, A., Soltermann, A., Jiingel, A., Marroquin Belaunzaran, O., Stahel, R., et al. (2013). Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells. J Transl Med 11, 187.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel, J.A., Otsuka, A., and Kabashima, K. (2018). Anti-PD-1 and anti- CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 8, 86.

  • Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721–732.

    CAS  PubMed  Google Scholar 

  • Senovilla, L., Vitale, I., Martins, I., Tailler, M., Pailleret, C., Michaud, M., Galluzzi, L., Adjemian, S., Kepp, O., Niso-Santano, M., et al. (2012). An immunosurveillance mechanism controls cancer cell ploidy Science 337, 1678–1684.

    CAS  PubMed  Google Scholar 

  • Sharma, P., Siefker-Radtke, A., de Braud, F., Basso, U., Calvo, E., Bono, P., Morse, M.A., Ascierto, P.A., Lopez-Martin, J., Brossart, P., et al. (2019). Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: CheckMate 032 nivolumab 1 mg/kg plus ipilimumab 3 mg/kg expansion cohort results. J Clin Oncol 37, 1608–1616.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shevach, E.M. (2002). CD4 CD25 suppressor T cells: more questions than answers. Nat Rev Immunol 2, 389–400.

    CAS  PubMed  Google Scholar 

  • Shevach, E.M. (2006). From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 25, 195–201.

    CAS  PubMed  Google Scholar 

  • Shi, T., Ma, Y., Yu, L., Jiang, J., Shen, S., Hou, Y., and Wang, T. (2018). Cancer immunotherapy: a focus on the regulation of immune checkpoints. IJMS 19, 1389.

    PubMed Central  Google Scholar 

  • Shibahara, D., Tanaka, K., Iwama, E., Kubo, N., Ota, K., Azuma, K., Harada, T., Fujita, J., Nakanishi, Y., and Okamoto, I. (2018). Intrinsic and extrinsic regulation of PD-L2 expression in oncogene-driven non-small cell lung cancer. J Thorac Oncol 13, 926–937.

    PubMed  Google Scholar 

  • Shrivastava, R., Asif, M., Singh, V., Dubey, P., Ahmad Malik, S., Lone, M.U.D., Tewari, B.N., Baghel, K.S., Pal, S., Nagar, O.K., et al. (2019). M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis. Cytokine 118, 130–143.

    CAS  PubMed  Google Scholar 

  • Simon, B., Harrer, D.C., Schuler-Thurner, B., Schaft, N., Schuler, G., Dorrie, J., and Uslu, U. (2018). The siRNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Exp Dermatol 27, 769–778.

    CAS  PubMed  Google Scholar 

  • Sinha, P., Clements, V.K., Bunt, S.K., Albelda, S.M., and Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179, 977–983.

    CAS  PubMed  Google Scholar 

  • Sistigu, A., Yamazaki, T., Vacchelli, E., Chaba, K., Enot, D.P., Adam, J., Vitale, I., Goubar, A., Baracco, E.E., Remedios, C., et al. (2014). Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20, 1301–1309.

    CAS  PubMed  Google Scholar 

  • Song, D.G., Ye, Q., Carpenito, C., Poussin, M., Wang, L.P., Ji, C., Figini, M., June, C.H., Coukos, G., and Powell, D.J. (2011). In vivo persistence, tumor localization, and antitumor activity of CAR-engineered T cells is enhanced by costimulatory signaling through CD137 (4-1BB). Cancer Res 71, 4617–4627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sotillo, E., Barrett, D.M., Black, K.L., Bagashev, A., Oldridge, D., Wu, G., Sussman, R., Lanauze, C., Ruella, M., Gazzara, M.R., et al. (2015). Convergence of acquired mutations and alternative splicing of CD 19 enables resistance to CART-19 immunotherapy. Cancer Discov 5, 1282–1295.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soumerai, J.D., Davids, M.S., Werner, L., Fisher, D.C., Armand, P., Amrein, P.C., Neuberg, D., Hochberg, E.P., Brown, J.R., and Abramson, J.S. (2019). Phase 1 study of lenalidomide, bendamustine, and rituximab in previously untreated patients with chronic lymphocytic leukemia. Leuk Lymphoma 60, 2931–2938.

    CAS  PubMed  Google Scholar 

  • Steinbrink, K., Wolfl, M., Jonuleit, H., Knop, J., and Enk, A.H. (1997). Induction of tolerance by IL-10-treated dendritic cells. J Immunol 159, 4772–4780.

    CAS  PubMed  Google Scholar 

  • Strauss, L., Bergmann, C., and Whiteside, T.L. (2009). Human circulating CD4+CD25high Foxp3+ regulatory T cells kill autologous CD8+ but not CD4 responder cells by Fas-mediated apoptosis. J Immunol 182, 1469–1480.

    CAS  PubMed  Google Scholar 

  • Su, S., Hu, B., Shao, J., Shen, B., Du, J., Du, Y., Zhou, J., Yu, L., Zhang, L., Chen, E., et al. (2016). CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070.

  • Su, Y.W., Xie, T.X., Sano, D., and Myers, J.N. (2011). IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS ONE 6, el9412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez, E.R., Chang, D.K., Sun, J., Sui, J., Freeman, G.J., Signoretti, S., Zhu, Q., and Marasco, W.A. (2016). Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget 7, 34341–34355.

    PubMed  PubMed Central  Google Scholar 

  • Sun, C., Dotti, G., and Savoldo, B. (2016). Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood 127, 3350–3359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama, T., Sekine, T., Makuuchi, M., Yamasaki, S., Kosuge, T., Yamamoto, J., Shimada, K., Sakamoto, M., Hirohashi, S., Ohashi, Y., et al. (2000). Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet 356, 802- 807.

    CAS  Google Scholar 

  • Tang, F., and Zheng, P. (2018). Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci 8, 34.

    PubMed  PubMed Central  Google Scholar 

  • Tao, K., He, M., Tao, F., Xu, G., Ye, M., Zheng, Y., and Li, Y. (2018). Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother Pharmacol 82, 815–827.

    CAS  PubMed  Google Scholar 

  • Tchou, J., Zhao, Y., Levine, B.L., Zhang, P.J., Davis, M.M., Melenhorst, J. J., Kulikovskaya, I., Brennan, A.L., Liu, X., Lacey, S.F., et al. (2017). Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res 5, 1152–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teng, R., Zhao, J., Zhao, Y., Gao, J., Li, H., Zhou, S., Wang, Y., Sun, Q., Lin, Z., Yang, W., et al. (2019). Chimeric antigen recepto-modified T cells repressed solid tumors and their relapse in an established patient-derived colon carcinoma xenograft model. J Immunother 42, 33–42.

    CAS  PubMed  Google Scholar 

  • Thibult, M.L., Mamessier, E., Gertner-Dardenne, J., Pastor, S., Just-Landi, S., Xerri, L., Chetaille, B., and Olive, D. (2013). PD-1 is a novel regulator of human B-cell activation. Int Immunol 25, 129–137.

    CAS  PubMed  Google Scholar 

  • Thomlinson, R.H., and Gray, L.H. (1955). The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 9, 539–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ti, D., Niu, Y., Wu, Z., Fu, X., and Han, W. (2018). Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Sci China Life Sci 61, 1320–1332.

    PubMed  Google Scholar 

  • Tian, M., Shi, Y., Liu, W., and Fan, J. (2019). Immunotherapy of hepatocellular carcinoma: strategies for combinatorial intervention. Sci China Life Sci 62, 1138–1143.

    PubMed  Google Scholar 

  • Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tong, B., and Wang, M. (2018). CD47 is a novel potent immunotherapy target in human malignancies: current studies and future promises. Future Oncol 14, 2179–2188.

    CAS  PubMed  Google Scholar 

  • Townsend, M.H., Shrestha, G., Robison, R.A., and O’Neill, K.L. (2018). The expansion of targetable biomarkers for CAR T cell therapy. J Exp Clin Cancer Res 37, 163.

    PubMed  PubMed Central  Google Scholar 

  • Trabattoni, D., Saresella, M., Biasin, M., Boasso, A., Piacentini, L., Ferrante, P., Dong, H., Maserati, R., Shearer, G.M., Chen, L., et al. (2003). B7-H1 is up-regulated in HIV infection and is a novel surrogate marker of disease progression. Blood 101, 2514–2520.

    CAS  PubMed  Google Scholar 

  • Traverso, I., Fenoglio, D., Negrini, S., Parodi, A., Battaglia, F., Kalli, F., Conteduca, G., Tardito, S., Traverso, P., Indiveri, F., et al. (2012). Cyclophosphamide inhibits the generation and function of CD8 regulatory T cells. Hum Immunol 73, 207–213.

    CAS  PubMed  Google Scholar 

  • van Dalen, F.J., van Stevendaal, M.H.M.E., Fennemann, F.L., Verdoes, M., and Ilina, O (2019). Molecular Repolarisation of Tumour-Associated Macrophages. Molecules 24, 9.

    Google Scholar 

  • Van Schandevyl, S., and Kerre, T. (2018). Chimeric antigen receptor T-cell therapy: design improvements and therapeutic strategies in cancer treatment. Acta Clin Belg 1–7.

    Google Scholar 

  • Verreck, F.A.W., de Boer, T., Langenberg, D.M.L., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R., and Ottenhoff, T.H.M. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA 101, 4560–4565.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vom Berg, J., Vrohlings, M., Haller, S., Haimovici, A., Kulig, R., Sledzinska, A., Weller, M., and Becher, B. (2013). Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J Exp Med 210, 2803–2811.

    Google Scholar 

  • Wallstabe, L., Mades, A., Frenz, S., Einsele, H., Rader, C., and Hudecek, M. (2018). CAR T cells targeting αv β3 integrin are effective against advanced cancer in preclinical models. Adv Cell Gene Ther 1, e11.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Chen, M., Wu, Z., Tong, C., Dai, H., Guo, Y., Liu, Y., Huang, J., Lv, H., Luo, C., et al. (2018). CD133-directed CART cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology 7, e1440169.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Yu, W., Zhu, J., Wang, J., Xia, K., Liang, C., and Tao, H. (2019). Anti-CD 166/4-IBB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res 38, 168.

    PubMed  PubMed Central  Google Scholar 

  • Weiskopf, K. (2017). Cancer immunotherapy targeting the CD47/SIRPa axis. Eur J Cancer 76, 100–109.

    CAS  PubMed  Google Scholar 

  • Whiteside, T.L. (2014). Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63, 67–72.

    CAS  PubMed  Google Scholar 

  • Wieder, T., Eigentler, T., Brenner, E., and Rocken, M. (2018). Immune checkpoint blockade therapy. J Allergy Clin Immunol 142, 1403–1414.

    CAS  PubMed  Google Scholar 

  • Wilkie, S., Picco, G., Foster, J., Davies, D.M., Julien, S., Cooper, L., Arif, S., Mather, S.J., Taylor-Papadimitriou, J., Burchell, J.M., et al. (2008). Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 180, 4901–4909.

    CAS  PubMed  Google Scholar 

  • Wu, A., Wei, J., Kong, L.Y., Wang, Y., Priebe, W., Qiao, W., Sawaya, R., and Heimberger, A.B. (2010). Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncol 12, 1113–1125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., Wang, Y., Shi, J., Liu, J., Li, Q., and Chen, L. (2018). Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors (Review). Oncol Lett 16, 2063–2070.

    PubMed  PubMed Central  Google Scholar 

  • Xu, W., Deng, B., Lin, P., Liu, C., Li, B., Huang, Q., Zhou, H., Yang, J., and Qu, L. (2020). Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci China Life Sci 63, doi:10.1007/S11427-019-9580-5.

  • Yaghoubi, N., Soltani, A., Ghazvini, K., Hassanian, S.M., and Hashemy, S. I. (2019). PD-1/PD-L1 blockade as a novel treatment for colorectal cancer. Biomed Pharmacother 110, 312–318.

    CAS  PubMed  Google Scholar 

  • Yan, W., Liu, X., Ma, H., Zhang, H., Song, X., Gao, L., Liang, X., and Ma, C. (2015). Tim-3 fosters HCC development by enhancing TGF-p-mediated alternative activation of macrophages. Gut 64, 1593–1604.

    CAS  PubMed  Google Scholar 

  • Yang, A.S., and Lattime E.C. (2003). Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63, 2150–2157.

    CAS  PubMed  Google Scholar 

  • Yang, L., DeBusk, L.M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., Matrisian, L.M., Carbone, D.P., and Lin, P.C. (2004). Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421.

    CAS  PubMed  Google Scholar 

  • Ye, B., Stary, C.M., Li, X., Gao, Q., Kang, C., and Xiong, X. (2018). Engineering chimeric antigen receptor-T cells for cancer treatment. Mol Cancer 17, 32.

    PubMed  PubMed Central  Google Scholar 

  • Ye, L., Lou, Y., Lu, L., and Fan, X. (2019). Mesothelin-targeted second generation CAR-T cells inhibit growth of mesothelin-expressing tumors in vivo. Exp Ther Med 17, 739–747.

    CAS  PubMed  Google Scholar 

  • Yeku, O.O., and Brentjens, R.J. (2016). Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans 44, 412–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeku, O.O., Purdon, T.J., Koneru, M., Spriggs, D., and Brentjens, R.J. (2017). Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 7, 10541.

  • You, J.S., and Jones, P.A. (2012). Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22, 9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Du, W., Yan, F., Wang, Y., Li, H., Cao, S., Yu, W., Shen, C., Liu, J., and Ren, X. (2013). Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 190, 3783–3797.

    CAS  PubMed  Google Scholar 

  • Zhang, B.L., Li, D., Gong, Y.L., Huang, Y., Qin, D.Y., Jiang, L., Liang, X., Yang, X., Gou, H.F., Wang, Y.S., et al. (2019). Preclinical evaluation of chimeric antigen receptor-modified T cells specific to epithelial cell adhesion molecule for treating colorectal cancer. Hum Gene Ther 30, 402–412.

    CAS  PubMed  Google Scholar 

  • Zhang, P., Zhao, S., Wu, C., Li, J., Li, Z., Wen, C., Hu, S., An, G., Meng, H., Zhang, X., et al. (2018). Effects of CSFlR-targeted chimeric antigen receptor-modified NK92MI T cells on tumor-associated macrophages. Immunotherapy 10, 935–949.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Hu, H., Chen, S.Y., Liu, C.J., Hu, F.F., Yu, J., Wu, Y., and Guo, A.Y. (2019). Transcriptome and regulatory network analyses of CD19-CAR-T immunotherapy for B-ALL. Genom Proteom Bioinf 17, 190–200.

    Google Scholar 

  • Zhao, Z., Chen, Y., Francisco, N.M., Zhang, Y., and Wu, M. (2018). The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm Sin B 8, 539–551.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Condomines, M., van der Stegen, S.J.C., Perna, F., Kloss, C.C., Gunset, G., Plotkin, J., and Sadelain, M. (2015). Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells. Cancer Cell 28, 415–428.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, C., Zheng, L., Yoo, J.K., Guo, H., Zhang, Y., Guo, X., Kang, B., Hu, R., Huang, J.Y., Zhang, Q., et al. (2017). Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16.

    CAS  PubMed  Google Scholar 

  • Zhu, H., Wang, D., Zhang, L., Xie, X., Wu, Y., Liu, Y., Shao, G., and Su, Z. (2014). Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32, 935–942.

    CAS  PubMed  Google Scholar 

  • Zhu, H., Wang, D., Zhang, L., Xie, X., Wu, Y., Liu, Y., Shao, G., and Su, Z. (2014). Upregulation of autophagy by hypoxia-inducible factor-1α promotes EMT and metastatic ability of CD 133 pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32, 935–942.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Nie.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiao, X., Saw, P.E. et al. Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci. China Life Sci. 63, 180–205 (2020). https://doi.org/10.1007/s11427-019-9665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9665-8

Keywords

Navigation