Skip to main content
Log in

Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Apical actin filaments are highly dynamic structures that are crucial for rapid pollen tube growth, but the mechanisms regulating their dynamics and spatial organization remain incompletely understood. We here identify that AtAIP1-1 is important for regulating the turnover and organization of apical actin filaments in pollen tubes. AtAIP1-1 is distributed uniformly in the pollen tube and loss of function of AtAIP1-1 affects the organization of the actin cytoskeleton in the pollen tube. Specifically, actin filaments became disorganized within the apical region of aip1-1 pollen tubes. Consistent with the role of apical actin filaments in spatially restricting vesicles in pollen tubes, the apical region occupied by vesicles becomes enlarged in aip1-1 pollen tubes compared to WT. Using ADF1 as a representative actin-depolymerizing factor, we demonstrate that AtAIP1-1 enhances ADF1-mediated actin depolymerization and filament severing in vitro, although AtAIP1-1 alone does not have an obvious effect on actin assembly and disassembly. The dynamics of apical actin filaments are reduced in aip1-1 pollen tubes compared to WT. Our study suggests that AtAIP1-1 works together with ADF to act as a module in regulating the dynamics of apical actin filaments to facilitate the construction of the unique “apical actin structure” in the pollen tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allwood, E.G., Anthony, R.G., Smertenko, A.P., Reichelt, S., Drobak, B. K., Doonan, J.H., Weeds, A.G., and Hussey, P.J. (2002). Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell 14, 2915–2927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann, K.J., and Pollard, T.D. (2001a). The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol 3, 306–310.

    Article  CAS  PubMed  Google Scholar 

  • Amann, K.J., and Pollard, T.D. (2001b). Direct real-time observation of actin filament branching mediated by Arp2/3 complex using total internal reflection fluorescence microscopy. Proc Natl Acad Sci USA 98, 15009–15013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amberg, D.C., Basart, E., and Botstein, D. (1995). Defining protein interactions with yeast actin in vivo. Nat Struct Mol Biol 2, 28–35.

    Article  CAS  Google Scholar 

  • Augustine, R.C., Pattavina, K.A., Tüzel, E., Vidali, L., and Bezanilla, M. (2011). Actin interacting protein1 and actin depolymerizing factor drive rapid actin dynamics in Physcomitrella patens. Plant Cell 23, 3696–3710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao, C., Wang, J., Zhang, R., Zhang, B., Zhang, H., Zhou, Y., and Huang, S. (2012). Arabidopsis VILLIN2 and VILLIN3 act redundantly in sclerenchyma development via bundling of actin filaments. Plant J 71, 962–975.

    Article  CAS  PubMed  Google Scholar 

  • Bou Daher, F., van Oostende, C., and Geitmann, A. (2011). Spatial and temporal expression of actin depolymerizing factors ADF7 and ADF10 during male gametophyte development in Arabidopsis thaliana. Plant Cell Physiol 52, 1177–1192.

    Article  CAS  PubMed  Google Scholar 

  • Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y., Chua, N.H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136, 1307–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, M., and Huang, S. (2015). Arabidopsis ACT11 modifies actin turnover to promote pollen germination and maintain the normal rate of tube growth. Plant J 83, 515–527.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C.Y., Wong, E.I., Vidali, L., Estavillo, A., Hepler, P.K., Wu, H., and Cheung, A.Y. (2002). The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14, 2175–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, N., Qu, X., Wu, Y., and Huang, S. (2009). Regulation of actin dynamics in pollen tubes: control of actin polymer level. J Integrat Plant Biol 51, 740–750.

    Article  CAS  Google Scholar 

  • Cheung, A.Y., Niroomand, S., Zou, Y., and Wu, H.M. (2010). A transmembrane formin nucleates subapical actin assembly and controls tip-focused growth in pollen tubes. Proc Natl Acad Sci USA 107, 16390–16395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, A.Y., and Wu, H.M. (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59, 547–572.

    Article  CAS  PubMed  Google Scholar 

  • Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  • Daher, F.B., and Geitmann, A. (2012). Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signal Behav 7, 879–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y. (2015). The cytoskeleton in the pollen tube. Curr Opin Plant Biol 28, 111–119.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, M., Song, X., Mouneimne, G., Sidani, M., Lawrence, D.S., and Condeelis, J.S. (2004). Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304, 743–746.

    Article  CAS  PubMed  Google Scholar 

  • Gibbon, B.C., Kovar, D.R., and Staiger, C.J. (1999). Latrunculin B has different effects on pollen germination and tube growth. Plant Cell 11, 2349–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen, S., Collins, A., Chin, S.M., Ydenberg, C.A., Gelles, J., and Goode, B.L. (2015). Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat Commun 6, 7202.

    Article  PubMed  Google Scholar 

  • Jiang, Y., and Huang, S. (2017). Direct visualization and quantification of the actin nucleation and elongation events in vitro by TIRF microscopy. Bio Protoc 7.

  • Jiang, Y., Wang, J., Xie, Y., Chen, N., and Huang, S. (2017). ADF10 shapes the overall organization of apical actin filaments by promoting their turnover and ordering in pollen tubes. J Cell Sci 130, 3988–4001.

    CAS  PubMed  Google Scholar 

  • Ketelaar, T., Allwood, E.G., Anthony, R., Voigt, B., Menzel, D., and Hussey, P.J. (2004). The actin-interacting protein AIP1 is essential for actin organization and plant development. Curr Biol 14, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Khurana, P., Henty, J.L., Huang, S., Staiger, A.M., Blanchoin, L., and Staiger, C.J. (2010). Arabidopsis VILLIN1 and VILLIN3 have overlapping and distinct activities in actin bundle formation and turnover. Plant Cell 22, 2727–2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer, C.S., Claes, A.R., Nzayisenga, J.C., Pietra, S., Stanislas, T., Hüser, A., Ikeda, Y., and Grebe, M. (2015). Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity. Development 142, 151–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konzok, A., Weber, I., Simmeth, E., Hacker, U., Maniak, M., and Müller-Taubenberger, A. (1999). Daip1, a Dictyostelium homologue of the yeast actin-interacting protein 1, is involved in endocytosis, cytokinesis, and motility. J Cell Biol 146, 453–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar, D.R., and Pollard, T.D. (2004). Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci USA 101, 14725–14730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar, D.R., Staiger, C.J., Weaver, E.A., and McCurdy, D.W. (2000). AtFim1 is an actin filament crosslinking protein from Arabidopsis thaliana. Plant J 24, 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Kroeger, J.H., Daher, F.B., Grant, M., and Geitmann, A. (2009). Microfilament orientation constrains vesicle flow and spatial distribution in growing pollen tubes. Biophys J 97, 1822–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan, Y., Liu, X., Fu, Y., and Huang, S. (2018). Arabidopsis class I formins control membrane-originated actin polymerization at pollen tube tips. PLoS Genet 14, e1007789.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Qu, X., Jiang, Y., Chang, M., Zhang, R., Wu, Y., Fu, Y., and Huang, S. (2015). Profilin regulates apical actin polymerization to control polarized pollen tube growth. Mol Plant 8, 1694–1709.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the \({2^{ - {\rm{\Delta \Delta }}{C_{\rm{T}}}}}\) method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lovy-Wheeler, A., Kunkel, J.G., Allwood, E.G., Hussey, P.J., and Hepler, P.K. (2006). Oscillatory increases in alkalinity anticipate growth and may regulate actin dynamics in pollen tubes of lily. Plant Cell 18, 2182–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., and Hepler, P.K. (2005). Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221, 95–104.

    Article  CAS  PubMed  Google Scholar 

  • Okada, K., Obinata, T., and Abe, H. (1999). XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci 112, 1553–1565.

    Article  CAS  PubMed  Google Scholar 

  • Ono, S. (2001). The Caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. J Cell Biol 152, 1313–1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard, T.D. (1984). Polymerization of ADP-actin. J Cell Biol 99, 769–777.

    Article  CAS  PubMed  Google Scholar 

  • Qu, X., Jiang, Y., Chang, M., Liu, X., Zhang, R., and Huang, S. (2015). Organization and regulation of the actin cytoskeleton in the pollen tube. Front Plant Sci 5, 786.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu, X., Zhang, H., Xie, Y., Wang, J., Chen, N., and Huang, S. (2013). Arabidopsis villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars. Plant Cell 25, 1803–1817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu, X., Zhang, R., Zhang, M., Diao, M., Xue, Y., and Huang, S. (2017). Organizational innovation of apical actin filaments drives rapid pollen tube growth and turning. Mol Plant 10, 930–947.

    Article  CAS  PubMed  Google Scholar 

  • Ren, H., and Xiang, Y. (2007). The function of actin-binding proteins in pollen tube growth. Protoplasma 230, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Rodal, A.A., Tetreault, J.W., Lappalainen, P., Drubin, D.G., and Amberg, D.C. (1999). Aip1p interacts with cofilin to disassemble actin filaments. J Cell Biol 145, 1251–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, M., Xie, Y., Zheng, Y., Wang, J., Su, Y., Yang, Q., and Huang, S. (2013). Oryza sativa actin-interacting protein 1 is required for rice growth by promoting actin turnover. Plant J 73, 747–760.

    Article  CAS  PubMed  Google Scholar 

  • Smertenko, A.P., Allwood, E.G., Khan, S., Jiang, C.J., Maciver, S.K., Weeds, A.G., and Hussey, P.J. (2001). Interaction of pollen-specific actin-depolymerizing factor with actin. Plant J 25, 203–212.

    Article  CAS  PubMed  Google Scholar 

  • Spudich, J.A., and Watt, S. (1971). The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246, 4866–4871.

    Article  CAS  PubMed  Google Scholar 

  • Staiger, C.J., Poulter, N.S., Henty, J.L., Franklin-Tong, V.E., and Blanchoin, L. (2010). Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61, 1969–1986.

    Article  CAS  PubMed  Google Scholar 

  • Staiger, C.J., Sheahan, M.B., Khurana P., Wang, X., McCurdy, D.W., and Blanchoin, L. (2009). Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J Cell Biol 184, 269–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidali, L., McKenna, S.T., and Hepler, P.K. (2001). Actin polymerization is essential for pollen tube growth. Mol Bio Cell 12, 2534–2545.

    Article  CAS  Google Scholar 

  • Vidali, L., Rounds, C.M., Hepler, P.K., and Bezanilla, M. (2009). Lifeact-mEGFP reveals a dynamic apical F-actin network in tip growing plant cells. PLoS ONE 4, e5744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, Y., Yan, J., Zhang, R., Qu, X., Ren, S., Chen, N., and Huang, S. (2010). Arabidopsis FIMBRIN5, an actin bundling factor, is required for pollen germination and pollen tube growth. Plant Cell 22, 3745–3763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, J., Zheng, Y., Yan, A., Chen, N., Wang, Z., Huang, S., and Yang, Z. (2009). Arabidopsis Formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21, 3868–3884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Song, J., Tian, X., Zhang, H., Li, L., and Zhu, H. (2018). Arabidopsis PRK6 interacts specifically with AtRopGEF8/12 and induces depolarized growth of pollen tubes when overexpressed. Sci China Life Sci 61, 100–112.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Qu, X., Bao, C., Khurana, P., Wang, Q., Xie, Y., Zheng, Y., Chen, N., Blanchoin, L., Staiger, C.J., et al. (2010a). Arabidopsis VILLIN5, an actin filament bundling and severing protein, is necessary for normal pollen tube growth. Plant Cell 22, 2749–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, M., Zhang, R., Qu, X., and Huang, S. (2016). Arabidopsis FIM5 decorates apical actin filaments and regulates their organization in the pollen tube. J Exp Bot 67, 3407–3417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., He, J., Lee, D., and McCormick, S. (2010b). Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152, 2200–2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, Y., Xie, Y., Jiang, Y., Qu, X., and Huang, S. (2013). Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell 25, 3405–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J., Nan, Q., Qin, T., Qian, D., Mao, T., Yuan, S., Wu, X., Niu, Y., Bai, Q., An, L., et al. (2017). Higher-ordered actin structures remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 are important for pollen germination and pollen tube growth. Mol Plant 10, 1065–1081.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yan Zhang (Shandong Agricultural University) for providing the transgenic lines expressing Lat52:YFP-RabA4b. This work was supported by a grant from the National Natural Science Foundation of China (31671390) and funding from the Tsinghua-Peking Joint Center for Life Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanjin Huang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, M., Li, X. & Huang, S. Arabidopsis AIP1-1 regulates the organization of apical actin filaments by promoting their turnover in pollen tubes. Sci. China Life Sci. 63, 239–250 (2020). https://doi.org/10.1007/s11427-019-9532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-9532-0

Navigation