Skip to main content
Log in

Advances in technologies for 3D genomics research

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The spatial structure of the orderly organized chromatin in the nucleus has important roles in maintaining normal cell function and in regulation of gene expression, and the high-throughput Hi-C and ChIA-PET methods have been widely used in various biological studies for determining potential spatial genome structures and their functions. However, there are still great difficulties and challenges in three-dimensional (3D) genomics research. More efficient, economical, and unbiased approaches to studying 3D genomics need to be developed for more widespread and easier applications. Here, we review the most recent studies on new 3D genomics research technologies, such as improvements of the traditional Hi-C and ChIA-PET methods, new approaches based on non-proximal-ligation strategies, and imaging-based methods improved in recent years. Especially, we review the CRISPR-based methods for functional validations in 3D genomics, which could be the forthcoming directions. We hope this review can show some insights into the potential improvements for future 3D genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbas, A., He, X., Niu, J., Zhou, B., Zhu, G., Ma, T., Song, J., Gao, J., Zhang, M.Q., and Zeng, J. (2019). Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes. Nat Commun 10, 2049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barutcu, A.R., Lajoie, B.R., McCord, R.P., Tye, C.E., Hong, D., Messier, T. L., Browne, G., van Wijnen, A.J., Lian, J.B., Stein, J.L., et al. (2015). Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biol 16, 214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beagrie, R.A., Scialdone, A., Schueler, M., Kraemer, D.C.A., Chotalia, M., Xie, S.Q., Barbieri, M., de Santiago, I., Lavitas, L.M., Branco, M.R., et al. (2017). Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bintu, B., Mateo, L.J., Su, J.H., Sinnott-Armstrong, N.A., Parker, M., Kinrot, S., Yamaya, K., Boettiger, A.N., and Zhuang, X. (2018). Superresolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonev, B., and Cavalli, G. (2016). Erratum: Organization and function of the 3D genome. Nat Rev Genet 17, 772.

    Article  CAS  PubMed  Google Scholar 

  • Bonev, B., Mendelson Cohen, N., Szabo, Q., Fritsch, L., Papadopoulos, G. L., Lubling, Y., Xu, X., Lv, X., Hugnot, J.P., Tanay, A., et al. (2017). Multiscale 3D genome rewiring during mouse neural development. Cell 171, 557–572.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy, J., and Fullwood, M.J. (2017). Deciphering noncoding RNA and chromatin interactions: multiplex chromatin interaction analysis by paired-end tag sequencing (mChIA-PET). In Enhancer RNAs. (New York, NY: Humana Press), pp. 63–89.

    Chapter  Google Scholar 

  • Cremer, M., Schmid, V.J., Kraus, F., Markaki, Y., Hellmann, I., Maiser, A., Leonhardt, H., John, S., Stamatoyannopoulos, J., and Cremer, T. (2017). Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenet Chromatin 10, 39.

    Article  CAS  Google Scholar 

  • Darrow, E.M., Huntley, M.H., Dudchenko, O., Stamenova, E.K., Durand, N.C., Sun, Z., Huang, S.C., Sanborn, A.L., Machol, I., Shamim, M., et al. (2016). Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc Natl Acad Sci USA 113, E4504–E4512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker, J., Belmont, A.S., Guttman, M., Leshyk, V.O., Lis, J.T., Lomvardas, S., Mirny, L.A., O’Shea, C.C., Park, P.J., Ren, B., et al. (2017). The 4D nucleome project. Nature 549, 219–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, P., Tu, X., Li, H., Zhang, J., Grierson, D., Li, P., and Zhong, S. (2020). Tissue-specific Hi-C analyses of rice, foxtail millet and maize suggest non-canonical function of plant chromatin domains. J Integr Plant Biol 62, 201–217.

    Article  CAS  PubMed  Google Scholar 

  • Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., et al. (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235.

    Article  CAS  PubMed  Google Scholar 

  • Dudchenko, O., Batra, S.S., Omer, A.D., Nyquist, S.K., Hoeger, M., Durand, N.C., Shamim, M.S., Machol, I., Lander, E.S., Aiden, A.P., et al. (2017). De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, R., Yu, M., Li, G., Chee, S., Liu, T., Schmitt, A.D., and Ren, B. (2016). Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res 26, 1345–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, E.H., Pegoraro, G., Brandão, H.B., Valton, A.L., Oomen, M.E., Dekker, J., Mirny, L., and Misteli, T. (2019). Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176, 1502–1515.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flavahan, W.A., Drier, Y., Liau, B.B., Gillespie, S.M., Venteicher, A.S., Stemmer-Rachamimov, A.O., Suvà, M.L., and Bernstein, B.E. (2016). Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Flyamer, I.M., Gassler, J., Imakaev, M., Brandão, H.B., Ulianov, S.V., Abdennur, N., Razin, S.V., Mirny, L.A., and Tachibana-Konwalski, K. (2017). Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D.U., Jung, I., Wu, H., Zhai, Y., Tang, Y., et al. (2015). CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162, 900–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J., Zhang, Z., and Wang, K. (2018). 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol Cytogenet 11, 21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hnisz, D., Weintraub, A.S., Day, D.S., Valton, A.L., Bak, R.O., Li, C.H., Goldmann, J., Lajoie, B.R., Fan, Z.P., Sigova, A.A., et al. (2016). Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454–1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, T.H.S., Weiner, A., Lajoie, B., Dekker, J., Friedman, N., and Rando, O.J. (2015). Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162, 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hug, C.B., and Vaquerizas, J.M. (2018). The birth of the 3D genome during early embryonic development. Trends Genet 34, 903–914.

    Article  CAS  PubMed  Google Scholar 

  • Ke, Y., Xu, Y., Chen, X., Feng, S., Liu, Z., Sun, Y., Yao, X., Li, F., Zhu, W., Gao, L., et al. (2017). 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381.e20.

    Article  CAS  PubMed  Google Scholar 

  • Koch, L. (2017). A 3D view of genome rearrangements. Nat Rev Genet 18, 456.

    Article  CAS  PubMed  Google Scholar 

  • Lai, B., Tang, Q., Jin, W., Hu, G., Wangsa, D., Cui, K., Stanton, B.Z., Ren, G., Ding, Y., Zhao, M., et al. (2018). Trac-looping measures genome structure and chromatin accessibility. Nat Methods 15, 741–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, D.S., Luo, C., Zhou, J., Chandran, S., Rivkin, A., Bartlett, A., Nery, J. R., Fitzpatrick, C., O’Connor, C., Dixon, J.R., et al. (2019). Simultaneous profiling of 3D genome structure and DNA methylation in single human cells. Nat Methods 16, 999–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, A., Yin, X., Xu, B., Wang, D., Han, J., Wei, Y., Deng, Y., Xiong, Y., and Zhang, Z. (2018a). Decoding topologically associating domains with ultra-low resolution Hi-C data by graph structural entropy. Nat Commun 9, 3265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, E., Liu, H., Huang, L., Zhang, X., Dong, X., Song, W., Zhao, H., and Lai, J. (2019a). Long-range interactions between proximal and distal regulatory regions in maize. Nat Commun 10, 2633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, G., Liu, Y., Zhang, Y., Kubo, N., Yu, M., Fang, R., Kellis, M., and Ren, B. (2019b). Joint profiling of DNA methylation and chromatin architecture in single cells. Nat Methods 16, 991–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Ruan, X., Auerbach, R.K., Sandhu, K.S., Zheng, M., Wang, P., Poh, H.M., Goh, Y., Lim, J., Zhang, J., et al. (2012). Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., Jia, L., Cao, Y., Chen, Q., and Li, C. (2018b). OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol 19, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Z., Li, G., Wang, Z., Djekidel, M.N., Li, Y., Qian, M.P., Zhang, M. Q., and Chen, Y. (2017). BL-Hi-C is an efficient and sensitive approach for capturing structural and regulatory chromatin interactions. Nat Commun 8, 1622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, D., Hong, P., Zhang, S., Xu, W., Jamal, M., Yan, K., Lei, Y., Li, L., Ruan, Y., Fu, Z.F., et al. (2018). Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet 50, 754–763.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Zhang, Y., Chen, Y., Li, M., Zhou, F., Li, K., Cao, H., Ni, M., Liu, Y., Gu, Z., et al. (2017). In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupiáñez, D.G., Kraft, K., Heinrich, V., Krawitz, P., Brancati, F., Klopocki, E., Horn, D., Kayserili, H., Opitz, J.M., Laxova, R., et al. (2015). Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, H., Tu, L.C., Naseri, A., Chung, Y.C., Grunwald, D., Zhang, S., and Pederson, T. (2018). CRISPR-Sirius: RNA scaffolds for signal amplification in genome imaging. Nat Methods 15, 928–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Tu, L.C., Naseri, A., Huisman, M., Zhang, S., Grunwald, D., and Pederson, T. (2016). Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34, 528–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo, L.J., Murphy, S.E., Hafner, A., Cinquini, I.S., Walker, C.A., and Boettiger, A.N. (2019). Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S.W., Andrews, S., Grey, W., Ewels, P.A., et al. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598–606.

    Article  CAS  PubMed  Google Scholar 

  • Moon, S.B., Kim, D.Y., Ko, J.H., and Kim, Y.S. (2019). Recent advances in the CRISPR genome editing tool set. Exp Mol Med 51, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, S.L., Mariano, N.C., Bermudez, A., Arruda, N.L., Wu, F., Luo, Y., Shankar, G., Jia, L., Chen, H., Hu, J.F., et al. (2017). Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8, 15993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., and Chang, H.Y. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13, 919–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagano, T., Lubling, Y., Stevens, T.J., Schoenfelder, S., Yaffe, E., Dean, W., Laue, E.D., Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64.

    Article  CAS  PubMed  Google Scholar 

  • Ni, Y., Cao, B., Ma, T., Niu, G., Huo, Y., Huang, J., Chen, D., Liu, Y., Yu, B., Zhang, M.Q., et al. (2017). Super-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes. eLife 6, e21660.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu, L., Shen, W., Huang, Y., He, N., Zhang, Y., Sun, J., Wan, J., Jiang, D., Yang, M., Tse, Y.C., et al. (2019). Amplification-free library preparation with SAFE Hi-C uses ligation products for deep sequencing to improve traditional Hi-C analysis. Commun Biol 2, 267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno, M., Ando, T., Priest, D.G., Kumar, V., Yoshida, Y., and Taniguchi, Y. (2019). Sub-nucleosomal genome structure reveals distinct nucleosome folding motifs. Cell 176, 520–534.e25.

    Article  CAS  PubMed  Google Scholar 

  • Olivares-Chauvet, P., Mukamel, Z., Lifshitz, A., Schwartzman, O., Elkayam, N.O., Lubling, Y., Deikus, G., Sebra, R.P., and Tanay, A. (2016). Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300.

    Article  CAS  PubMed  Google Scholar 

  • Oluwadare, O., and Cheng, J. (2017). ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data. BMC Bioinformatics 18, 480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orlando, G., Law, P.J., Cornish, A.J., Dobbins, S.E., Chubb, D., Broderick, P., Litchfield, K., Hariri, F., Pastinen, T., Osborne, C.S., et al. (2018). Promoter capture Hi-C-based identification of recurrent noncoding mutations in colorectal cancer. Nat Genet 50, 1375–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou, H.D., Phan, S., Deerinck, T.J., Thor, A., Ellisman, M.H., and O’Shea, C.C. (2017). ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng, Y., Xiong, D., Zhao, L., Ouyang, W., Wang, S., Sun, J., Zhang, Q., Guan, P., Xie, L., Li, W., et al. (2019). Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun 10, 2632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quinodoz, S.A., Ollikainen, N., Tabak, B., Palla, A., Schmidt, J.M., Detmar, E., Lai, M.M., Shishkin, A.A., Bhat, P., Takei, Y., et al. (2018). Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani, V., Deng, X., Qiu, R., Gunderson, K.L., Steemers, F.J., Disteche, C.M., Noble, W.S., Duan, Z., and Shendure, J. (2017). Massively multiplex single-cell Hi-C. Nat Methods 14, 263–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Risca, V.I., Denny, S.K., Straight, A.F., and Greenleaf, W.J. (2017). Variable chromatin structure revealed by in situ spatially correlated DNA cleavage mapping. Nature 541, 237–241.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D.R., Wu, Y.M., Lonigro, R.J., Vats, P., Cobain, E., Everett, J., Cao, X., Rabban, E., Kumar-Sinha, C., Raymond, V., et al. (2017). Integrative clinical genomics of metastatic cancer. Nature 548, 297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowley, M.J., and Corces, V.G. (2018). Organizational principles of 3D genome architecture. Nat Rev Genet 19, 789–800.

    Article  CAS  PubMed  Google Scholar 

  • Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, T.J., Lando, D., Basu, S., Atkinson, L.P., Cao, Y., Lee, S.F., Leeb, M., Wohlfahrt, K.J., Boucher, W., O’Shaughnessy-Kirwan, A., et al. (2017). 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Symmons, O., Pan, L., Remeseiro, S., Aktas, T., Klein, F., Huber, W., and Spitz, F. (2016). The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev Cell 39, 529–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, L., Xing, D., Chang, C.H., Li, H., and Xie, X.S. (2018). Three-dimensional genome structures of single diploid human cells. Science 361, 924–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Z., Luo, O.J., Li, X., Zheng, M., Zhu, J.J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., et al. (2015). CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf, D., and Mourad, R. (2019). The 3D genome: From fundamental principles to disease and cancer. Semin Cell Dev Biol 90, 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Xu, X., Nguyen, C.M., Liu, Y., Gao, Y., Lin, X., Daley, T., Kipniss, N.H., La Russa, M., and Qi, L.S. (2018). CRISPR-mediated programmable 3D genome positioning and nuclear organization. Cell 175, 1405–1417.e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X.T., Cui, W., and Peng, C. (2017). HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions. Nucleic Acids Res 45, e163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaffe, E., and Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43, 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W., He, B., and Tan, K. (2017). Identifying topologically associating domains and subdomains by Gaussian mixture model and proportion test. Nat Commun 8, 535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Zhang, S., Zhao, Q., Ming, R., and Tang, H. (2019a). Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants 5, 833–845.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Wong, C.H., Birnbaum, R.Y., Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Chng, K.R., Lingadahalli, S., Chen, Z., Liu, M.H., Do, H.H., Cai, S., Rinaldi, N., Poh, H.M., Li, G., et al. (2019b). An AR-ERG transcriptional signature defined by long-range chromatin interactomes in prostate cancer cells. Genome Res 29, 223–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Wang, S., Cao, Z., Ouyang, W., Zhang, Q., Xie, L., Zheng, R., Guo, M., Ma, M., Hu, Z., et al. (2019). Chromatin loops associated with active genes and heterochromatin shape rice genome architecture for transcriptional regulation. Nat Commun 10, 3640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, M., Tian, S.Z., Capurso, D., Kim, M., Maurya, R., Lee, B., Piecuch, E., Gong, L., Zhu, J.J., Li, Z., et al. (2019). Multiplex chromatin interactions with single-molecule precision. Nature 566, 558–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, G., Deng, W., Hu, H., Ma, R., Zhang, S., Yang, J., Peng, J., Kaplan, T., and Zeng, J. (2018). Reconstructing spatial organizations of chromosomes through manifold learning. Nucleic Acids Res 46, e50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771402, 31970590, 31701115) and the Fundamental Research Funds for the Central Universities (2662017PY116). The finders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors apologize to the many scientists who made contributions to the field but were not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Li.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, G. Advances in technologies for 3D genomics research. Sci. China Life Sci. 63, 811–824 (2020). https://doi.org/10.1007/s11427-019-1704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1704-2

Keywords

Navigation