Skip to main content
Log in

Epitranscriptomic technologies and analyses

  • Review
  • Special Topic: Noncoding RNA: from dark matter to bright star
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

RNA can interact with RNA-binding proteins (RBPs), mRNA, or other non-coding RNAs (ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins (RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addo-Quaye, C., Miller, W., and Axtell, M.J. (2008). CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25, 130–131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Althammer, S., González-Vallinas, J., Ballaré, C., Beato, M., and Eyras, E. (2011). Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data. Bioinformatics 27, 3333–3340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andronescu, M., Zhang, Z.C., and Condon, A. (2005). Secondary structure prediction of interacting RNA molecules. J Mol Biol 345, 987–1001.

    Article  CAS  PubMed  Google Scholar 

  • Arango, D., Sturgill, D., Alhusaini, N., Dillman, A.A., Sweet, T.J., Hanson, G., Hosogane, M., Sinclair, W.R., Nanan, K.K., Mandler, M.D., et al. (2018). Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athanasiadis, A., Rich, A., and Maas, S. (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2, e391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aw, J.G.A., Shen, Y., Wilm, A., Sun, M., Lim, X.N., Boon, K.L., Tapsin, S., Chan, Y.S., Tan, C.P., Sim, A.Y.L., et al. (2016). In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol Cell 62, 603–617.

    Article  CAS  PubMed  Google Scholar 

  • Bahn, J.H., Lee, J.H., Li, G., Greer, C., Peng, G., and Xiao, X. (2012). Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22, 142–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batista, P.J., and Chang, H.Y. (2013). Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin, J.D., Novoa, E.M., Vejnar, C.E., Yartseva, V., Takacs, C.M., Kellis, M., and Giraldez, A.J. (2018). Analyses of mRNA structure dynamics identify embryonic gene regulatory programs. Nat Struct Mol Biol 25, 677–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The protein data bank. Nucleic Acids Res 28, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhart, S.H., Tafer, H., Mückstein, U., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2006). Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol Biol 1, 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bevilacqua, P.C., Ritchey, L.E., Su, Z., and Assmann, S.M. (2016). Genome-wide analysis of RNA secondary structure. Annu Rev Genet 50, 235–266.

    Article  CAS  PubMed  Google Scholar 

  • Birkedal, U., Christensen-Dalsgaard, M., Krogh, N., Sabarinathan, R., Gorodkin, J., and Nielsen, H. (2015). Profiling ofribose methylations in RNA by high-throughput sequencing. Angew Chem 127, 461–465.

    Article  Google Scholar 

  • Boccaletto, P., Machnicka, M.A., Purta, E., Piątkowski, P., Bagiński, B., Wirecki, T.K., de Crécy-Lagard, V., Ross, R., Limbach, P.A., Kotter, A., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46, D303–D307.

    Article  CAS  PubMed  Google Scholar 

  • Brion, P., and Westhof, E. (1997). Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26, 113–137.

    Article  CAS  PubMed  Google Scholar 

  • Busch, A., Richter, A.S., and Backofen, R. (2008). IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24, 2849–2856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W.V. (2014). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, S.H., and Rajbhandary, U.L. (1968). Studies on polynucleotides. LXXXI. Yeast phenylalanine transfer ribonucleic acid: partial digestion with pancreatic ribonuclease. J Biol Chem 243, 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Yun, J., Kim, M., Mendell, J.T., and Xie, Y. (2014). PIPE-CLIP: a comprehensive online tool for CLIP-seq data analysis. Genome Biol 15, R18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, K., Lu, Z., Wang, X., Fu, Y., Luo, G.Z., Liu, N., Han, D., Dominissini, D., Dai, Q., Pan, T., et al. (2015). High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew Chem Int Ed 54, 1587–1590.

    Article  CAS  Google Scholar 

  • Chi, S.W., Zang, J.B., Mele, A., and Darnell, R.B. (2009). Argonaute HITS-CLIP decodes microRNA—mRNA interaction maps. Nature 460, 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comoglio, F., Sievers, C., and Paro, R. (2015). Sensitive and highly resolved identification of RNA-protein interaction sites in PAR-CLIP data. BMC Bioinformatics 16, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corcoran, D.L., Georgiev, S., Mukherjee, N., Gottwein, E., Skalsky, R.L., Keene, J.D., and Ohler, U. (2011). PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12, R79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruz, J.A., and Westhof, E. (2009). The dynamic landscapes of RNA architecture. Cell 136, 604–609.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Q., Moshitch-Moshkovitz, S., Han, D., Kol, N., Amariglio, N., Rechavi, G., Dominissini, D., and He, C. (2017). Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat Methods 14, 695–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dambach, M.D., and Winkler, W.C. (2009). Expanding roles for metabolite-sensing regulatory RNAs. Curr Opin Microbiol 12, 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, D.R. (1995). Stabilization of RNA stacking by pseudouridine. Nucl Acids Res 23, 5020–5026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Campo, C., Bartholomaus, A., Fedyunin, I., and Ignatova, Z. (2015). Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11, e1005613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delatte, B., Wang, F., Ngoc, L.V., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, B., Putmans, P., Awe, S., et al. (2016). Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Dethoff, E.A., Chugh, J., Mustoe, A.M., and Al-Hashimi, H.M. (2012). Functional complexity and regulation through RNA dynamics. Nature 482, 322–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi, G., Zhou, Y., Zhong, Z., Toh, D.F.K., and Chen, G. (2015). RNA triplexes: from structural principles to biological and biotech applications. Wires RNA 6, 111–128.

    Article  CAS  PubMed  Google Scholar 

  • Ding, Y., Tang, Y., Kwok, C.K., Zhang, Y., Bevilacqua, P.C., and Assmann, S.M. (2014). In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505, 696–700.

    Article  CAS  PubMed  Google Scholar 

  • Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M.S., Dai, Q., Di Segni, A., Salmon-Divon, M., Clark, W.C., et al. (2016). The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draper, D.E. (2004). A guide to ions and RNA structure. RNA 10, 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drewe-Boss, P., Wessels, H.H., and Ohler, U. (2018). omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data. Genome Biol 19, 183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupuis, N.F., Holmstrom, E.D., and Nesbitt, D.J. (2014). Molecular-crowding effects on single-molecule RNA folding/unfolding thermodynamics and kinetics. Proc Natl Acad Sci USA 111, 8464–8469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelheit, S., Schwartz, S., Mumbach, M.R., Wurtzel, O., and Sorek, R. (2013). Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9, e1003602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engreitz, J., Lander, E.S., and Guttman, M. (2015). RNA antisense purification (RAP) for mapping RNA interactions with chromatin. Methods Mol Biol 1262, 183–197.

    Article  CAS  PubMed  Google Scholar 

  • Fay, M.M., Lyons, S.M., and Ivanov, P. (2017). RNA G-quadruplexes in biology: principles and molecular mechanisms. J Mol Biol 429, 2127–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, C., Chan, D., Joseph, J., Muuronen, M., Coldren, W.H., Dai, N., Corrêa Jr, I.R., Furche, F., Hadad, C.M., and Spitale, R.C. (2018). Light-activated chemical probing of nucleobase solvent accessibility inside cells. Nat Chem Biol 14, 276–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkes, L., Moxon, S., Woolfenden, H.C., Stocks, M.B., Szittya, G., Dalmay, T., and Moulton, V. (2012). PAREsnip: a tool for rapid genome-wide discovery of small RNA/target interactions evidenced through degradome sequencing. Nucleic Acids Res 40, e103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaston, K.W., and Limbach, P.A. (2014). The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry. RNA Biol 11, 1568–1585.

    Article  PubMed  Google Scholar 

  • German, M.A., Pillay, M., Jeong, D.H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L.A., Nobuta, K., German, R., et al. (2008). Global identification of microRNA—target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26, 941–946.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J., Shao, D., Xu, K., Lu, Z., Lu, Z.J., Yang, Y.T., and Zhang, Q.C. (2017). RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res 46, D194–D201.

    Article  PubMed Central  CAS  Google Scholar 

  • Gosai, S.J., Foley, S.W., Wang, D., Silverman, I.M., Selamoglu, N., Nelson, A.D.L., Beilstein, M.A., Daldal, F., Deal, R.B., and Gregory, B.D. (2015). Global analysis of the RNA-protein interaction and RNA secondary structure landscapes of the Arabidopsis nucleus. Mol Cell 57, 376–388.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J., Wang, M., Yang, Y., Qiu, D., Zhang, Y., Ma, J., Zhou, Y., Hannon, G.J., and Yu, Y. (2018). GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, J.U., and Bartel, D.P. (2016). RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353, aaf5371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano Jr., M., Jungkamp, A.C., Munschauer, M., et al. (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen, M., Martin, J.S., Broadaway, S., and Laederach, A. (2010). Disease-associated mutations that alter the RNA structural ensemble. PLoS Genet 6, e1001074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hector, R.D., Burlacu, E., Aitken, S., Bihan, T.L., Tuijtel, M., Zaplatina, A., Cook, A.G., and Granneman, S. (2014). Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res 42, 12138–12154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilman-Miller, S.L., and Woodson, S.A. (2003). Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9, 722–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herschlag, D. (1995). RNA chaperones and the RNA folding problem. J Biol Chem 270, 20871–20874.

    Article  CAS  PubMed  Google Scholar 

  • Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., and Schuster, P. (1994). Fast folding and comparison of RNA secondary structures. Monatsh Chem 125, 167–188.

    Article  CAS  Google Scholar 

  • Huppertz, I., Attig, J., D’Ambrogio, A., Easton, L.E., Sibley, C.R., Sugimoto, Y., Tajnik, M., König, J., and Ule, J. (2014). iCLIP: Protein—RNA interactions at nucleotide resolution. Methods 65, 274–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain, S., Sajini, A.A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J.G., Odom, D.T., Ule, J., et al. (2013). NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4, 255–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Incarnato, D., and Oliviero, S. (2017). The RNA epistructurome: uncovering RNA function by studying structure and post-transcriptional modifications. Trends Biotech 35, 318–333.

    Article  CAS  Google Scholar 

  • Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G., and Oliviero, S. (2017). High-throughput single-base resolution mapping of RNA 2′-O-methylated residues. Nucleic Acids Res 45, 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Incarnato, D., Neri, F., Anselmi, F., and Oliviero, S. (2014). Genome-wide profiling ofmouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15, 491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju, Y.S., Kim, J.I., Kim, S., Hong, D., Park, H., Shin, J.Y., Lee, S., Lee, W. C., Kim, S., Yu, S.B., et al. (2011). Extensive genomic and transcriptional diversity identified through massively parallel DNA and RNA sequencing of eighteen Korean individuals. Nat Genet 43, 745–752.

    Article  CAS  PubMed  Google Scholar 

  • Kakrana, A., Hammond, R., Patel, P., Nakano, M., and Meyers, B.C. (2014). sPARTA: a parallelized pipeline for integrated analysis of plant miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res 42, e139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ke, S., Alemu, E.A., Mertens, C., Gantman, E.C., Fak, J.J., Mele, A., Haripal, B., Zucker-Scharff, I., Moore, M.J., Park, C.Y., et al. (2015). A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29, 2037–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner, S., Burhenne, J., and Helm, M. (2010). Detection of RNA modifications. RNA Biol 7, 237–247.

    Article  CAS  PubMed  Google Scholar 

  • Kertesz, M., Wan, Y., Mazor, E., Rinn, J.L., Nutter, R.C., Chang, H.Y., and Segal, E. (2010). Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Khoddami, V., and Cairns, B.R. (2013). Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31, 458–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilburn, D., Roh, J.H., Guo, L., Briber, R.M., and Woodson, S.A. (2010). Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J Am Chem Soc 132, 8690–8696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B., and Kim, V.N. (2019). fCLIP-seq for transcriptomic footprinting ofdsRNA-binding proteins: Lessons from DROSHA. Methods 152, 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Klein, D.J., Moore, P.B., and Steitz, T.A. (2004). The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 10, 1366–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • König, J., Zarnack, K., Luscombe, N.M., and Ule, J. (2012). Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13, 77–83.

    Article  PubMed  CAS  Google Scholar 

  • König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D.J., Luscombe, N.M., and Ule, J. (2010). iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17, 909–915.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer, F.R., and Mills, D.R. (1981). Secondary structure formation during RNA synthesis. Nucl Acids Res 9, 5109–5124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretz, M., Siprashvili, Z., Chu, C., Webster, D.E., Zehnder, A., Qu, K., Lee, C.S., Flockhart, R.J., Groff, A.F., Chow, J., et al. (2013). Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Krogh, N., Jansson, M.D., Häfner, S.J., Tehler, D., Birkedal, U., Christensen-Dalsgaard, M., Lund, A.H., and Nielsen, H. (2016). Profiling of 2′-O-Me in human rRNA reveals a subset of fractionally modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Res 44, 7884–7895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyzosiak, W.J., Sobczak, K., Wojciechowska, M., Fiszer, A., Mykowska, A., and Kozlowski, P. (2012). Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 40, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, M., Chan, D., and Spitale, R.C. (2015). RNA structure: merging chemistry and genomics for a holistic perspective. Bioessays 37, 1129–1138.

    Article  CAS  PubMed  Google Scholar 

  • Kudla, G., Granneman, S., Hahn, D., Beggs, J.D., and Tollervey, D. (2011). Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci USA 108, 10010–10015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok, C.K. (2016). Dawn of the in vivo RNA structurome and interactome. Biochem Soc Trans 44, 1395–1410.

    Article  CAS  PubMed  Google Scholar 

  • Kwok, C.K., and Balasubramanian, S. (2015). Targeted detection of G-quadruplexes in cellular RNAs. Angew Chem Int Ed 54, 6751–6754.

    Article  CAS  Google Scholar 

  • Kwok, C.K., Marsico, G., Sahakyan, A.B., Chambers, V.S., and Balasubramanian, S. (2016). rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat Methods 13, 841–844.

    Article  CAS  PubMed  Google Scholar 

  • Lai, D., and Meyer, I.M. (2015). A comprehensive comparison of general RNA—RNA interaction prediction methods. Nucleic Acids Res 44, e61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leamy, K.A., Assmann, S.M., Mathews, D.H., and Bevilacqua, P.C. (2016). Bridging the gap between in vitro and in vivo RNA folding. Quart Rev Biophys 49, e10.

    Article  Google Scholar 

  • Lee, F.C.Y., and Ule, J. (2018). Advances in CLIP technologies for studies of protein-RNA interactions. Mol Cell 69, 354–369.

    Article  CAS  PubMed  Google Scholar 

  • Levanon, E.Y., Eisenberg, E., Yelin, R., Nemzer, S., Hallegger, M., Shemesh, R., Fligelman, Z.Y., Shoshan, A., Pollock, S.R., Sztybel, D., et al. (2004). Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22, 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, C.J.T., Pan, T., and Kalsotra, A. (2017). RNA modifications and structures cooperate to guide RNA—protein interactions. Nat Rev Mol Cell Biol 18, 202–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, F., Zheng, Q., Ryvkin, P., Dragomir, I., Desai, Y., Aiyer, S., Valladares, O., Yang, J., Bambina, S., Sabin, L.R., et al. (2012a). Global analysis of RNA secondary structure in two metazoans. Cell Rep 1, 69–82.

    Article  CAS  PubMed  Google Scholar 

  • Li, F., Zheng, Q., Vandivier, L.E., Willmann, M.R., Chen, Y., and Gregory, B.D. (2012b). Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell 24, 4346–4359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, J.H., Liu, S., Zhou, H., Qu, L.H., and Yang, J.H. (2013). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucl Acids Res 42, D92–D97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li, P., Wei, Y., Mei, M., Tang, L., Sun, L., Huang, W., Zhou, J., Zou, C., Zhang, S., Qin, C.F., et al. (2018). Integrative analysis of Zika virus genome RNA structure reveals critical determinants of viral infectivity. Cell Host Microbe 24, 875–886.e5.

    Article  CAS  PubMed  Google Scholar 

  • Li, S., and Mason, C.E. (2014). The pivotal regulatory landscape of RNA modifications. Annu Rev Genom Hum Genet 15, 127–150.

    Article  CAS  Google Scholar 

  • Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S., and Yi, C. (2016). Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat Chem Biol 12, 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., Mao, Y., Lv, J., Yi, D., Chen, X.W., et al. (2017). Base-resolution mapping reveals distinct m1A methylome in nuclear- and mitochondrial-encoded transcripts. Mol Cell 68, 993–1005.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F., and Yi, C. (2015). Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol 11, 592–597.

    Article  CAS  PubMed  Google Scholar 

  • Linder, B., Grozhik, A.V., Olarerin-George, A.O., Meydan, C., Mason, C. E., and Jaffrey, S.R. (2015). Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12, 767–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, N., Parisien, M., Dai, Q., Zheng, G., He, C., and Pan, T. (2013). Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Li, J.H., Wu, J., Zhou, K.R., Zhou, H., Yang, J.H., and Qu, L.H. (2015). StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res 43, W480–W486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P.F., and Hofacker, I.L. (2011). ViennaRNA Package 2.0. Algorithms Mol Biol 6, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loughrey, D., Watters, K.E., Settle, A.H., and Lucks, J.B. (2014). SHAPE-Seq Equ2.0: systematic optimization and extension of high-throughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res 42, e165.

    Article  PubMed Central  CAS  Google Scholar 

  • Lovci, M.T., Ghanem, D., Marr, H., Arnold, J., Gee, S., Parra, M., Liang, T. Y., Stark, T.J., Gehman, L.T., Hoon, S., et al. (2013). Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nat Struct Mol Biol 20, 1434–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy, A.F., Riordan, D.P., and Brown, P.O. (2014). Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, Z., Zhang, Q.C., Lee, B., Flynn, R.A., Smith, M.A., Robinson, J.T., Davidovich, C., Gooding, A.R., Goodrich, K.J., Mattick, J.S., et al. (2016). RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahen, E.M., Watson, P.Y., Cottrell, J.W., and Fedor, M.J. (2010). mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 8, e1000307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maragkakis, M., Alexiou, P., Nakaya, T., and Mourelatos, Z. (2016). CLIPSeqTools—a novel bioinformatics CLIP-seq analysis suite. RNA 22, 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand, V., Blanloeil-Oillo, F., Helm, M., and Motorin, Y. (2016). Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res 44, e135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathews, D.H., Sabina, J., Zuker, M., and Turner, D.H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288, 911–940.

    Article  CAS  PubMed  Google Scholar 

  • McMahon, A.C., Rahman, R., Jin, H., Shen, J.L., Fieldsend, A., Luo, W., and Rosbash, M. (2016). TRIBE: Hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S.D., Gregersen, L.H., Munschauer, M., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, K.D., and Jaffrey, S.R. (2014). The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol 15, 313–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montange, R.K., and Batey, R.T. (2006). Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, S.A., Kidwell, M.A., and Doudna, J.A. (2014). Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15, 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Mortimer, S.A., Trapnell, C., Aviran, S., Pachter, L., and Lucks, J.B. (2012). SHAPE-Seq: High-throughput RNA structure analysis. Curr Protoc Chem Biol 4, 275–297.

    Article  PubMed  Google Scholar 

  • Motorin, Y., Muller, S., Behm-Ansmant, I., and Branlant, C. (2007). Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 425, 21–53.

    Article  CAS  PubMed  Google Scholar 

  • Nees, G., Kaufmann, A., and Bauer, S. (2014). Detection of RNA modifications by HPLC analysis and competitive ELISA. Methods Mol Biol 1169, 3–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, T.C., Cao, X., Yu, P., Xiao, S., Lu, J., Biase, F.H., Sridhar, B., Huang, N., Zhang, K., and Zhong, S. (2016). Mapping RNA-RNA interactome and RNA structure in vivo by MARIO. Nat Commun 7, 12023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson, C.O., Friedersdorf, M.B., Bisogno, L.S., and Keene, J.D. (2017). DO-RIP-seq to quantify RNA binding sites transcriptome-wide. Methods 118–119, 16–23.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, T.W. (2014). Detecting RNA-RNA interactions using psoralen derivatives. Cold Spring Harbor Protocols 2014 (9), pdb.prot080861.

  • Osborne, R.J., and Thornton, C.A. (2006). RNA-dominant diseases. Hum Mol Genet 15, R162–R169.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Z., Cheng, Y., Tan, B.C.M., Kang, L., Tian, Z., Zhu, Y., Zhang, W., Liang, Y., Hu, X., Tan, X., et al. (2012). Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Piao, M., Sun, L., and Zhang, Q.C. (2017). RNA regulations and functions decoded by transcriptome-wide RNA structure probing. Genomics Proteomics Bioinformatics 15, 267–278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pyle, A. (2002). Metal ions in the structure and function of RNA. J Biol Inorg Chem 7, 679–690.

    Article  CAS  PubMed  Google Scholar 

  • Qi, F., and Frishman, D. (2017). Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions. Nucleic Acids Res 45, 6109–6118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian, X., Zhao, J., Yeung, P.Y., Zhang, Q.C., and Kwok, C.K. (2019). Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci 44, 33–52.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan, V. (2002). Ribosome structure and the mechanism of translation. Cell 108, 557–572.

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan, M., Porter, D.F., and Khavari, P.A. (2019). Methods to study RNA-protein interactions. Nat Methods 16, 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani, V., Qiu, R., and Shendure, J. (2015). High-throughput determination of RNA structure by proximity ligation. Nat Biotechnol 33, 980–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswami, G., Lin, W., Piskol, R., Tan, M.H., Davis, C., and Li, J.B. (2012). Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9, 579–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter, J.S., and Mathews, D.H. (2010). RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roost, C., Lynch, S.R., Batista, P.J., Qu, K., Chang, H.Y., and Kool, E.T. (2015). Structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification. J Am Chem Soc 137, 2107–2115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth, A., and Breaker, R.R. (2009). The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78, 305–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roundtree, I.A., Evans, M.E., Pan, T., and He, C. (2017). Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouskin, S., Zubradt, M., Washietl, S., Kellis, M., and Weissman, J.S. (2014). Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705.

    Article  CAS  PubMed  Google Scholar 

  • Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M., Rossmanith, W., Stern-Ginossar, N., and Schwartz, S. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551, 251–255.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, M., Ueda, H., Yano, T., Okada, S., Terajima, H., Mitsuyama, T., Toyoda, A., Fujiyama, A., Kawabata, H., and Suzuki, T. (2014). A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24, 522–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder, R., Barta, A., and Semrad, K. (2004). Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5, 908–919.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S., Bernstein, D.A., Mumbach, M.R., Jovanovic, M., Herbst, R. H., León-Ricardo, B.X., Engreitz, J.M., Guttman, M., Satija, R., Lander, E.S., et al. (2014). Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, W.G., Finch, J.T., and Klug, A. (1995). The crystal structure of an AII-RNAhammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 81, 991–1002.

    Article  CAS  PubMed  Google Scholar 

  • Seetin, M.G., Kladwang, W., Bida, J.P., and Das, R. (2014). Massively parallel RNA chemical mapping with a reduced bias MAP-Seq protocol. Methods Mol Biol 1086, 95–117.

    Article  CAS  PubMed  Google Scholar 

  • Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R., and Patel, D.J. (2006). Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, A., Qian, Y., Weyn-Vanhentenryck, S.M., and Zhang, C. (2016). CLIP Tool Kit (CTK): a flexible and robust pipeline to analyze CLIP sequencing data. Bioinformatics 33, btw653.

    Article  CAS  Google Scholar 

  • Sharma, E., Sterne-Weiler, T., O’Hanlon, D., and Blencowe, B.J. (2016). Global mapping of human RNA-RNA interactions. Mol Cell 62, 618–626.

    Article  CAS  PubMed  Google Scholar 

  • Siegfried, N.A., Busan, S., Rice, G.M., Nelson, J.A.E., and Weeks, K.M. (2014). RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11, 959–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman, I.M., Berkowitz, N.D., Gosai, S.J., and Gregory, B.D. (2016). Genome-wide approaches for RNA structure probing. Adv Exp Med Biol 907, 29–59.

    Article  CAS  PubMed  Google Scholar 

  • Spitale, R.C., Flynn, R.A., Zhang, Q.C., Crisalli, P., Lee, B., Jung, J.W., Kuchelmeister, H.Y., Batista, P.J., Torre, E.A., Kool, E.T., et al. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squires, J.E., Patel, H.R., Nousch, M., Sibbritt, T., Humphreys, D.T., Parker, B.J., Suter, C.M., and Preiss, T. (2012). Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res 40, 5023–5033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto, Y., Chakrabarti, A.M., Luscombe, N.M., and Ule, J. (2017). Using hiCLIP to identify RNA duplexes that interact with a specific RNA-binding protein. Nat Protoc 12, 611–637.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N.M., and Ule, J. (2015). hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature 519, 491–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy, B., Wong, J., Granneman, S., Tollervey, D., Gally, D., and Tree, J. (2018). High-resolution, high-throughput analysis of Hfq-binding sites using UV crosslinking and analysis of cDNA (CRAC). Methods Mol Biol 1737, 251–272.

    Article  CAS  PubMed  Google Scholar 

  • Tafer, H., and Hofacker, I.L. (2008). RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24, 2657–2663.

    Article  CAS  PubMed  Google Scholar 

  • Thody, J., Folkes, L., Medina-Calzada, Z., Xu, P., Dalmay, T., and Moulton, V. (2018). PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules. Nucleic Acids Res 46, 8730–8739.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thore, S., Leibundgut, M., and Ban, N.N. (2006). Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211.

    Article  CAS  PubMed  Google Scholar 

  • Treiber, D.K., and Williamson, J.R. (1999). Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9, 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Ule, J., Jensen, K.B., Ruggiu, M., Mele, A., Ule, A., and Darnell, R.B. (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215.

    Article  CAS  PubMed  Google Scholar 

  • Ule, J., Jensen, K., Mele, A., and Darnell, R.B. (2005). CLIP: A method for identifying protein—RNA interaction sites in living cells. Methods 37, 376–386.

    Article  CAS  PubMed  Google Scholar 

  • Underwood, J.G., Uzilov, A.V., Katzman, S., Onodera, C.S., Mainzer, J.E., Mathews, D.H., Lowe, T.M., Salama, S.R., and Haussler, D. (2010). FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat Methods 7, 995–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uren, P.J., Bahrami-Samani, E., Burns, S.C., Qiao, M., Karginov, F.V., Hodges, E., Hannon, G.J., Sanford, J.R., Penalva, L.O.F., and Smith, A. D. (2012). Site identification in high-throughput RNA-protein interaction data. Bioinformatics 28, 3013–3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Nostrand, E.L., Pratt, G.A., Shishkin, A.A., Gelboin-Burkhart, C., Fang, M.Y., Sundararaman, B., Blue, S.M., Nguyen, T.B., Surka, C., Elkins, K., et al. (2016). Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods 13, 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, Y., Kertesz, M., Spitale, R.C., Segal, E., and Chang, H.Y. (2011). Understanding the transcriptome through RNA structure. Nat Rev Genet 12, 641–655.

    Article  CAS  PubMed  Google Scholar 

  • Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., Makino, D. L., Nutter, R.C., Segal, E., and Chang, H.Y. (2012). Genome-wide measurement of RNA folding energies. Mol Cell 48, 169–181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan, Y., Qu, K., Zhang, Q.C., Flynn, R.A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R.C., Snyder, M.P., Segal, E., et al. (2014). Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel, A., Akbaşli, E., and Gorodkin, J. (2012). RIsearch: fast RNA-RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 28, 2738–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyn-Vanhentenryck, S.M., Mele, A., Yan, Q., Sun, S., Farny, N., Zhang, Z., Xue, C., Herre, M., Silver, P.A., Zhang, M.Q., et al. (2014). HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep 6, 1139–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Will, C.L., and Luhrmann, R. (2011). Spliceosome structure and function. Cold Spring Harb Perspect Biol 3, a003707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson, J.R. (2000). Induced fit in RNA-protein recognition. Nat Struct Biol 7, 834–837.

    Article  CAS  PubMed  Google Scholar 

  • Woodson, S.A. (2005). Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9, 104–109.

    Article  CAS  PubMed  Google Scholar 

  • Wulff, B.E., Sakurai, M., and Nishikura, K. (2011). Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat Rev Genet 12, 81–85.

    Article  CAS  PubMed  Google Scholar 

  • Xia, T., SantaLucia Jr., J., Burkard, M.E., Kierzek, R., Schroeder, S.J., Jiao, X., Cox, C., and Turner, D.H. (1998). Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson—Crick base pairs. Biochemistry 37, 14719–14735.

    Article  CAS  PubMed  Google Scholar 

  • Yang, S.Y., Lejault, P., Chevrier, S., Boidot, R., Robertson, A.G., Wong, J. M.Y., and Monchaud, D. (2018). Transcriptome-wide identification of transient RNA G-quadruplexes in human cells. Nat Commun 9, 4730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, X., Yang, Y., Sun, B.F., Chen, Y.S., Xu, J.W., Lai, W.Y., Li, A., Wang, X., Bhattarai, D.P., Xiao, W., et al. (2017). 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res 27, 606–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates, L.A., Norbury, C.J., and Gilbert, R.J.C. (2013). The long and short of microRNA. Cell 153, 516–519.

    Article  CAS  PubMed  Google Scholar 

  • Zarnegar, B.J., Flynn, R.A., Shen, Y., Do, B.T., Chang, H.Y., and Khavari, P.A. (2016). irCLIP platform for efficient characterization of protein-RNA interactions. Nat Methods 13, 489–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, B.S., Roundtree, I.A., and He, C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18, 31–42.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Zhang, Y., Teng, Y., Liu, K., Liu, Y., Li, W., and Wu, L. (2019). SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein—RNA interactions with high accuracy. Nucleic Acids Res 47, e33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, Q., Ryvkin, P., Li, F., Dragomir, I., Valladares, O., Yang, J., Cao, K., Wang, L.S., and Gregory, B.D. (2010). Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis. Plos Genet 6, e1001141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, Y., Li, Y.F., Sunkar, R., and Zhang, W. (2011). SeqTar: an effective method for identifying microRNA guided cleavage sites from degradome of polyadenylated transcripts in plants. Nucleic Acids Res 40, e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, Y., Kierzek, E., Loo, Z.P., Antonio, M., Yau, Y.H., Chuah, Y.W., Geifman-Shochat, S., Kierzek, R., and Chen, G. (2013). Recognition of RNA duplexes by chemically modified triplex-forming oligonucleotides. Nucleic Acids Res 41, 6664–6673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv, O., Gabryelska, M.M., Lun, A.T.L., Gebert, L.F.R., Sheu-Gruttadauria, J., Meredith, L.W., Liu, Z.Y., Kwok, C.K., Qin, C.F., MacRae, I.J., et al. (2018). COMRADES determines in vivo RNA structures and interactions. Nat Methods 15, 785–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zubradt, M., Gupta, P., Persad, S., Lambowitz, A.M., Weissman, J.S., and Rouskin, S. (2017). DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14, 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Prof. Chengqi Yi’s team wrote RNA modifications, Prof. Jian-Hua Yang’s team wrote bioinformatics methods, Prof. Qiangfeng Zhang’s team wrote RNA structures, and Prof. Yang Yu’s team wrote biological methods for RNA-protein interaction.

Corresponding authors

Correspondence to Jian-Hua Yang, Chengqi Yi, Yang Yu or Qiangfeng Cliff Zhang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

The authors contributed equally to this work and are arranged in alphabetic order of surnames.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liang, QX., Lin, JR. et al. Epitranscriptomic technologies and analyses. Sci. China Life Sci. 63, 501–515 (2020). https://doi.org/10.1007/s11427-019-1658-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1658-x

Keywords

Navigation