Skip to main content

Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets

Abstract

RNA splicing dysregulation is widespread in cancer. Accumulating evidence demonstrates that splicing defects resulting from splicing dysregulation play critical roles in cancer pathogenesis and can serve as new biomarkers and therapeutic targets for cancer intervention. These findings have greatly deepened the mechanistic understandings of the regulation of alternative splicing in cancer cells, leading to rapidly growing interests in targeting cancer-related splicing defects as new therapies. Here we summarize the current research progress on splicing dysregulation in cancer and highlight the strategies available or under development for targeting RNA splicing defects in cancer.

This is a preview of subscription content, access via your institution.

References

  • Agrawal, A.A., Yu, L., Smith, P.G., and Buonamici, S. (2018). Targeting splicing abnormalities in cancer. Curr Opin Genet Dev 48, 67–74.

    CAS  PubMed  Article  Google Scholar 

  • Aird, D., Teng, T., Huang, C.L., Pazolli, E., Banka, D., Cheung-Ong, K., Eifert, C., Furman, C., Wu, Z.J., Seiler, M., et al. (2019). Sensitivity to splicing modulation of BCL2 family genes defines cancer therapeutic strategies for splicing modulators. Nat Commun 10, 137.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Anczuków, O., and Krainer, A.R. (2016). Splicing-factor alterations in cancers. RNA 22, 1285–1301.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Anczuków, O., Rosenberg, A.Z., Akerman, M., Das, S., Zhan, L., Karni, R., Muthuswamy, S.K., and Krainer, A.R. (2012). The splicing factor SRSF1 regulates apoptosis and proliferation to promote mammary epithelial cell transformation. Nat Struct Mol Biol 19, 220–228.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Araki, S., Dairiki, R., Nakayama, Y., Murai, A., Miyashita, R., Iwatani, M., Nomura, T., and Nakanishi, O. (2015). Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating premRNA splicing. PLoS ONE 10, e0116929.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Arun, G., Diermeier, S.D., and Spector, D.L. (2018). Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24, 257–277.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bach, D.H., Lee, S.K., and Sood, A.K. (2019). Circular RNAs in cancer. Mol Ther Nucleic Acids 16, 118–129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Baralle, F.E., and Giudice, J. (2017). Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18, 437–451.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bates, D.O., Morris, J.C., Oltean, S., and Donaldson, L.F. (2017). Pharmacology of Modulators of Alternative Splicing. Pharmacol Rev 69, 63–79, doi. 10.1124/pr.115.011239.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bennett, C.F. (2019). Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med 70, 307–321.

    CAS  PubMed  Article  Google Scholar 

  • Berget, S.M., Moore, C., and Sharp, P.A. (1977). Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74, 3171–3175.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Blanc, R.S., and Richard, S. (2017). Arginine methylation: the coming of age. Mol Cell 65, 8–24.

    CAS  PubMed  Article  Google Scholar 

  • Braunschweig, U., Gueroussov, S., Plocik, A.M., Graveley, B.R., and Blencowe, B.J. (2013). Dynamic integration of splicing within gene regulatory pathways. Cell 152, 1252–1269.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chakraborty, C., Sharma, A.R., Sharma, G., Doss, C.G.P., and Lee, S.S. (2017). Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8, 132–143.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chan-Penebre, E., Kuplast, K.G., Majer, C.R., Boriack-Sjodin, P.A., Wigle, T.J., Johnston, L.D., Rioux, N., Munchhof, M.J., Jin, L., Jacques, S.L., et al. (2015). A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 11, 432–437.

    CAS  PubMed  Article  Google Scholar 

  • Chan, T.A., Yarchoan, M., Jaffee, E., Swanton, C., Quezada, S.A., Stenzinger, A., and Peters, S. (2018). Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30, 44–56.

    PubMed Central  Article  Google Scholar 

  • Chen, L.L. (2016). The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17, 205–211.

    CAS  PubMed  Article  Google Scholar 

  • Chen, L., Luo, C., Shen, L., Liu, Y., Wang, Q., Zhang, C., Guo, R., Zhang, Y., Xie, Z., Wei, N., et al. (2017). SRSF1 prevents DNA damage and promotes tumorigenesis through regulation of DBF4B pre-mRNA splicing. Cell Rep 21, 3406–3413.

    CAS  PubMed  Article  Google Scholar 

  • Cheng, Z., Yu, C., Cui, S., Wang, H., Jin, H., Wang, C., Li, B., Qin, M., Yang, C., He, J., et al. (2019). circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun 10, 3200.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Choudhury, R., Roy, S.G., Tsai, Y.S., Tripathy, A., Graves, L.M., and Wang, Z. (2014). The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 5, 3078.

    PubMed  Article  CAS  Google Scholar 

  • Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. (1977). An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell 12, 1–8.

    CAS  PubMed  Article  Google Scholar 

  • Climente-González, H., Porta-Pardo, E., Godzik, A., and Eyras, E. (2017). The functional impact of alternative splicing in cancer. Cell Rep 20, 2215–2226.

    PubMed  Article  CAS  Google Scholar 

  • Das, S., Anczuków, O., Akerman, M., and Krainer, A.R. (2012). Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep 1, 110–117.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Das, S., and Krainer, A.R. (2014). Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol Cancer Res 12, 1195–1204.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • David, C.J., Chen, M., Assanah, M., Canoll, P., and Manley, J.L. (2009). HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463, 364–368.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Dewaele, M., Tabaglio, T., Willekens, K., Bezzi, M., Teo, S.X., Low, D.H. P., Koh, C.M., Rambow, F., Fiers, M., Rogiers, A., et al. (2016). Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 126, 68–84.

    PubMed  Article  Google Scholar 

  • Dhamija, S., and Menon, M.B. (2018). Non-coding transcript variants of protein-coding genes–what are they good for? RNA Biol 15, 1–7.

    Article  Google Scholar 

  • Du, W.W., Fang, L., Yang, W., Wu, N., Awan, F.M., Yang, Z., and Yang, B. B. (2016a). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 24, 357–370.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Du, W.W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., and Yang, B.B. (2016b). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44, 2846–2858.

    PubMed  PubMed Central  Article  Google Scholar 

  • Dvinge, H., Kim, E., Abdel-Wahab, O., and Bradley, R.K. (2016). RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer 16, 413–430.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Effenberger, K.A., Urabe, V.K., and Jurica, M.S. (2017). Modulating splicing with small molecular inhibitors of the spliceosome. WIREs RNA 8, e1381.

    Article  CAS  Google Scholar 

  • Eskens, F.A.L.M., Ramos, F.J., Burger, H., O’Brien, J.P., Piera, A., de Jonge, M.J.A., Mizui, Y., Wiemer, E.A.C., Carreras, M.J., Baselga, J., et al. (2013). Phase I pharmacokinetic and pharmacodynamic study of the first-in-class spliceosome inhibitor E7107 in patients with advanced solid tumors. Clin Cancer Res 19, 6296–6304.

    CAS  PubMed  Article  Google Scholar 

  • Fellmann, C., Gowen, B.G., Lin, P.C., Doudna, J.A., and Corn, J.E. (2016). Cornerstones of CRISPR–Cas in drug discovery and therapy. Nat Rev Drug Discov 16, 89–100.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Fong, J.Y., Pignata, L., Goy, P.A., Kawabata, K.C., Lee, S.C.W., Koh, C. M., Musiani, D., Massignani, E., Kotini, A.G., Penson, A., et al. (2019). Therapeutic targeting of RNA splicing catalysis through inhibition of protein arginine methylation. Cancer Cell 36, 194–209.e9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Frankiw, L., Baltimore, D., and Li, G. (2019). Alternative mRNA splicing in cancer immunotherapy. Nat Rev Immunol 19, 675–687.

    CAS  PubMed  Article  Google Scholar 

  • Fu, X.D., and Ares Jr, M. (2014). Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15, 689–701.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gallardo, M., Hornbaker, M.J., Zhang, X., Hu, P., Bueso-Ramos, C., and Post, S.M. (2016). Aberrant hnRNP K expression: All roads lead to cancer. Cell Cycle 15, 1552–1557.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gallardo, M., Lee, H.J., Zhang, X., Bueso-Ramos, C., Pageon, L.R., McArthur, M., Multani, A., Nazha, A., Manshouri, T., Parker-Thornburg, J., et al. (2015). hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer Cell 28, 486–499.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gapinske, M., Luu, A., Winter, J., Woods, W.S., Kostan, K.A., Shiva, N., Song, J.S., and Perez-Pinera, P. (2018). CRISPR-SKIP: programmable gene splicing with single base editors. Genome Biol 19, 107.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • García-Tuñón, I., Alonso-Pérez, V., Vuelta, E., Pérez-Ramos, S., Herrero, M., Méndez, L., Hernández-Sánchez, J.M., Martín-Izquierdo, M., Saldaña, R., Sevilla, J., et al. (2019). Splice donor site sgRNAs enhance CRISPR/Cas9-mediated knockout efficiency. PLoS ONE 14, e0216674.

    PubMed  PubMed Central  Article  Google Scholar 

  • Georgilis, A., Klotz, S., Hanley, C.J., Herranz, N., Weirich, B., Morancho, B., Leote, A.C., D’ Artista, L., Gallage, S., Seehawer, M., et al. (2018). PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34, 85–102.e9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Geuens, T., Bouhy, D., and Timmerman, V. (2016). The hnRNP family: insights into their role in health and disease. Hum Genet 135, 851–867.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Giannakouros, T., Nikolakaki, E., Mylonis, I., and Georgatsou, E. (2011). Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 278, 570–586.

    CAS  PubMed  Article  Google Scholar 

  • Gonçalves, V., and Jordan, P. (2015). Posttranscriptional regulation of splicing factor SRSF1 and its role in cancer cell biology. Biomed Res Int 2015, 287048.

    PubMed  PubMed Central  Google Scholar 

  • Gonçalves, V., Pereira, J., and Jordan, P. (2017). Signaling pathways driving aberrant splicing in cancer cells. Genes 9, 9.

    PubMed Central  Article  CAS  Google Scholar 

  • Gong, B., Kiyotani, K., Sakata, S., Nagano, S., Kumehara, S., Baba, S., Besse, B., Yanagitani, N., Friboulet, L., Nishio, M., et al. (2019). Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med 216, 982–1000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Grelet, S., Link, L.A., Howley, B., Obellianne, C., Palanisamy, V., Gangaraju, V.K., Diehl, J.A., and Howe, P.H. (2017). A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 19, 1105–1115.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gutschner, T., and Diederichs, S. (2012). The hallmarks of cancer. RNA Biol 9, 703–719.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Haddad, R.I., Weinstein, L.J., Wieczorek, T.J., Bhattacharya, N., Raftopoulos, N., Oster, H., Zhang, M.W., Zhang, X., Latham, V.M., Costello, R., et al. (2004). A phase II clinical and pharmacodynamic study of E7070 in patients with metastatic, recurrent, or refractory squamous cell carcinoma of the head and neck: modulation of retinoblastoma protein phosphorylation by a novel chloroindolyl sulfonamide cell cycle inhibitor. Clin Cancer Res 10, 4680–4687.

    CAS  PubMed  Article  Google Scholar 

  • Han, S.P., Tang, Y.H., and Smith, R. (2010). Functional diversity of the hnRNPs: past, present and perspectives. Biochem J 430, 379–392.

    CAS  PubMed  Article  Google Scholar 

  • Han, T., Goralski, M., Gaskill, N., Capota, E., Kim, J., Ting, T.C., Xie, Y., Williams, N.S., and Nijhawan, D. (2017). Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755.

    PubMed  Article  CAS  Google Scholar 

  • Herzel, L., Ottoz, D.S.M., Alpert, T., and Neugebauer, K.M. (2017). Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat Rev Mol Cell Biol 18, 637–650.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Howard, J.M., and Sanford, J.R. (2015). The RNAissance family: SR proteins as multifaceted regulators of gene expression. WIREs RNA 6, 93–110.

    CAS  PubMed  Article  Google Scholar 

  • Hsu, T.Y.T., Simon, L.M., Neill, N.J., Marcotte, R., Sayad, A., Bland, C.S., Echeverria, G.V., Sun, T., Kurley, S.J., Tyagi, S., et al. (2015). The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525, 384–388.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Inoue, D., Chew, G.L., Liu, B., Michel, B.C., Pangallo, J., D’Avino, A.R., Hitchman, T., North, K., Lee, S.C.W., Bitner, L., et al. (2019). Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Iwai, K., Yaguchi, M., Nishimura, K., Yamamoto, Y., Tamura, T., Nakata, D., Dairiki, R., Kawakita, Y., Mizojiri, R., Ito, Y., et al. (2018). Antitumor efficacy of a novel CLK inhibitor via targeting RNA splicing and MYC-dependent vulnerability. EMBO Mol Med 10, e8289.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Iwatani-Yoshihara, M., Ito, M., Klein, M.G., Yamamoto, T., Yonemori, K., Tanaka, T., Miwa, M., Morishita, D., Endo, S., Tjhen, R., et al. (2017). Discovery of allosteric inhibitors targeting the spliceosomal RNA helicase Brr2. J Med Chem 60, 5759–5771.

    CAS  PubMed  Article  Google Scholar 

  • Iyer, M.K., Niknafs, Y.S., Malik, R., Singhal, U., Sahu, A., Hosono, Y., Barrette, T.R., Prensner, J.R., Evans, J.R., Zhao, S., et al. (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47, 199–208.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jangi, M., and Sharp, P.A. (2014). Building robust transcriptomes with master splicing factors. Cell 159, 487–498.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ji, Q., Zhang, L., Liu, X., Zhou, L., Wang, W., Han, Z., Sui, H., Tang, Y., Wang, Y., Liu, N., et al. (2014). Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer 111, 736–748.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jiang, S., Cheng, S.J., Ren, L.C., Wang, Q., Kang, Y.J., Ding, Y., Hou, M., Yang, X.X., Lin, Y., Liang, N., et al. (2019). An expanded landscape of human long noncoding RNA. Nucleic Acids Res 7842–7856.

    Google Scholar 

  • Jung, H., Lee, D., Lee, J., Park, D., Kim, Y.J., Park, W.Y., Hong, D., Park, P.J., and Lee, E. (2015). Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet 47, 1242–1248.

    CAS  PubMed  Article  Google Scholar 

  • Kahles, A., Lehmann, K.V., Toussaint, N.C., Hüser, M., Stark, S.G., Sachsenberg, T., Stegle, O., Kohlbacher, O., Sander, C., Rätsch, G., et al. (2018). Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34, 211–224.e6.

    CAS  PubMed  Article  Google Scholar 

  • Kielkopf, C.L., Lucke, S., and Green, M.R. (2004). U2AF homology motifs: protein recognition in the RRM world. Genes Dev 18, 1513–1526.

    CAS  PubMed  Article  Google Scholar 

  • Kim, E., Ilagan, J.O., Liang, Y., Daubner, G.M., Lee, S.C.W., Ramakrishnan, A., Li, Y., Chung, Y.R., Micol, J.B., Murphy, M.E., et al. (2015). SRSF2 mutations contribute to myelodysplasia by mutantspecific effects on exon recognition. Cancer Cell 27, 617–630.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Knott, G.J., and Doudna, J.A. (2018). CRISPR-Cas guides the future of genetic engineering. Science 361, 866–869.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Koh, C.M., Bezzi, M., Low, D.H.P., Ang, W.X., Teo, S.X., Gay, F.P.H., Al-Haddawi, M., Tan, S.Y., Osato, M., Sabò, A., et al. (2015). MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis. Nature 523, 96–100.

    CAS  PubMed  Article  Google Scholar 

  • Koh, C.M., Sabò, A., and Guccione, E. (2016). Targeting MYC in cancer therapy: RNA processing offers new opportunities. Bioessays 38, 266–275.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kole, R., Krainer, A.R., and Altman, S. (2012). RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11, 125–140.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kristensen, L.S., Andersen, M.S., Stagsted, L.V.W., Ebbesen, K.K., Hansen, T.B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20, 675–691.

    CAS  PubMed  Article  Google Scholar 

  • Kristensen, L.S., Hansen, T.B., Venø, M.T., and Kjems, J. (2017). Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37, 555–565.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lee, F.C.Y., and Ule, J. (2018). Advances in CLIP technologies for studies of protein-RNA interactions. Mol Cell 69, 354–369.

    CAS  PubMed  Article  Google Scholar 

  • Lee, S.C.W., and Abdel-Wahab, O. (2016). Therapeutic targeting of splicing in cancer. Nat Med 22, 976–986.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee, S.C.W., Dvinge, H., Kim, E., Cho, H., Micol, J.B., Chung, Y.R., Durham, B.H., Yoshimi, A., Kim, Y.J., Thomas, M., et al. (2016). Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med 22, 672–678.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee, S.C.W., North, K., Kim, E., Jang, E., Obeng, E., Lu, S.X., Liu, B., Inoue, D., Yoshimi, A., Ki, M., et al. (2018). Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241.e8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee, Y., and Rio, D.C. (2015). Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem 84, 291–323.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., Fatica, A., Santini, T., Andronache, A., Wade, M., et al. (2017). Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66, 22–37.e9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Li, J., Yang, J., Zhou, P., Le, Y., Zhou, C., Wang, S., Xu, D., Lin, H.K., and Gong, Z. (2015a). Circular RNAs in cancer: novel insights into origins, properties, functions and implications. Am J Cancer Res 5, 472–480.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., Chen, D., Gu, J., He, X., and Huang, S. (2015b). Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25, 981–984.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lin, C., and Miles, W.O. (2019). Beyond CLIP: advances and opportunities to measure RBP–RNA and RNA–RNA interactions. Nucleic Acids Res 47, 5490–5501.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lino, C.A., Harper, J.C., Carney, J.P., and Timlin, J.A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug Deliver 25, 1234–1257.

    CAS  Article  Google Scholar 

  • Long, J.C., and Caceres, J.F. (2009). The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417, 15–27.

    CAS  PubMed  Article  Google Scholar 

  • Madan, V., Kanojia, D., Li, J., Okamoto, R., Sato-Otsubo, A., Kohlmann, A., Sanada, M., Grossmann, V., Sundaresan, J., Shiraishi, Y., et al. (2015). Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 6, 6042.

    CAS  PubMed  Article  Google Scholar 

  • Malakar, P., Shilo, A., Mogilevsky, A., Stein, I., Pikarsky, E., Nevo, Y., Benyamini, H., Elgavish, S., Zong, X., Prasanth, K.V., et al. (2017). Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res 77, 1155–1167.

    CAS  PubMed  Article  Google Scholar 

  • Martinez, N.M., and Gilbert, W.V. (2018). Pre-mRNA modifications and their role in nuclear processing. Quant Biol 6, 210–227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Matera, A.G., and Wang, Z. (2014). A day in the life of the spliceosome. Nat Rev Mol Cell Biol 15, 108–121.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Moore, M.J., and Proudfoot, N.J. (2009). Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688–700.

    CAS  PubMed  Article  Google Scholar 

  • Moreno, P.M.D., and Pêgo, A.P. (2014). Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front Chem 2, 87.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550.

    PubMed Central  Article  CAS  Google Scholar 

  • Obeng, E.A., Chappell, R.J., Seiler, M., Chen, M.C., Campagna, D.R., Schmidt, P.J., Schneider, R.K., Lord, A.M., Wang, L., Gambe, R.G., et al. (2016). Physiologic expression of Sf3b1 K700E causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation. Cancer Cell 30, 404–417.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Oltean, S., and Bates, D.O. (2014). Hallmarks of alternative splicing in cancer. Oncogene 33, 5311–5318.

    CAS  PubMed  Article  Google Scholar 

  • Palangat, M., Anastasakis, D.G., Fei, D.L., Lindblad, K.E., Bradley, R., Hourigan, C.S., Hafner, M., and Larson, D.R. (2019). The splicing factor U2AF1 contributes to cancer progression through a noncanonical role in translation regulation. Genes Dev 33, 482–497.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pamudurti, N.R., Bartok, O., Jens, M., Ashwal-Fluss, R., Stottmeister, C., Ruhe, L., Hanan, M., Wyler, E., Perez-Hernandez, D., Ramberger, E., et al. (2017). Translation of circRNAs. Mol Cell 66, 9–21.e7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pasman, Z., Been, M.D., and Garcia-Blanco, M.A. (1996). Exon circularization in mammalian nuclear extracts. RNA 2, 603–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patop, I.L., Wüst, S., and Kadener, S. (2019). Past, present, and future of circ RNAs. EMBO J 38, e100836.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Pavlyukov, M.S., Yu, H., Bastola, S., Minata, M., Shender, V.O., Lee, Y., Zhang, S., Wang, J., Komarova, S., Wang, J., et al. (2018). Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell 34, 119–135. e10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pervouchine, D., Popov, Y., Berry, A., Borsari, B., Frankish, A., and Guigó, R. (2019). Integrative transcriptomic analysis suggests new autoregulatory splicing events coupled with nonsense-mediated mRNA decay. Nucleic Acids Res 47, 5293–5306.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Pickar-Oliver, A., and Gersbach, C.A. (2019). The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Pilotto, S., Gkountakos, A., Carbognin, L., Scarpa, A., Tortora, G., and Bria, E. (2017). MET exon 14 juxtamembrane splicing mutations: clinical and therapeutical perspectives for cancer therapy. Ann Transl Med 5, 2.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Poulikakos, P.I., Persaud, Y., Janakiraman, M., Kong, X., Ng, C., Moriceau, G., Shi, H., Atefi, M., Titz, B., Gabay, M.T., et al. (2011). RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature 480, 387–390.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Puente, X.S., Beà, S., Valdés-Mas, R., Villamor, N., Gutiérrez-Abril, J., Martín-Subero, J.I., Munar, M., Rubio-Pérez, C., Jares, P., Aymerich, M., et al. (2015). Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 526, 519–524.

    CAS  Article  PubMed  Google Scholar 

  • Qi, Y., Yu, J., Han, W., Fan, X., Qian, H., Wei, H., Tsai, Y.S., Zhao, J., Zhang, W., Liu, Q., et al. (2016). A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation. Nat Commun 7, ncomms11840.

    Article  CAS  Google Scholar 

  • Rahhal, R., and Seto, E. (2019). Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 47, 4911–4926.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ransohoff, J.D., Wei, Y., and Khavari, P.A. (2017). The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol 19, 143–157.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Raymond, E., ten Bokkel Huinink, W.W., Taïeb, J., Beijnen, J.H., Faivre, S., Wanders, J., Ravic, M., Fumoleau, P., Armand, J.P., and Schellens, J. H.M. (2002). Phase I and pharmacokinetic study of E7070, a novel chloroindolyl sulfonamide cell-cycle inhibitor, administered as a onehour infusion every three weeks in patients with advanced cancer. J Clin Oncol 20, 3508–3521.

    CAS  PubMed  Article  Google Scholar 

  • Romero-Barrios, N., Legascue, M.F., Benhamed, M., Ariel, F., and Crespi, M. (2018). Splicing regulation by long noncoding RNAs. Nucleic Acids Res 46, 2169–2184.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ruan, G.X., Barry, E., Yu, D., Lukason, M., Cheng, S.H., and Scaria, A. (2017). CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol Ther 25, 331–341.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Salzman, J., Gawad, C., Wang, P.L., Lacayo, N., and Brown, P.O. (2012). Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 7, e30733.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Samstein, R.M., Lee, C.H., Shoushtari, A.N., Hellmann, M.D., Shen, R., Janjigian, Y.Y., Barron, D.A., Zehir, A., Jordan, E.J., Omuro, A., et al. (2019). Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 51, 202–206.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Saw, P.E., and Song, E.W. (2019). siRNA therapeutics: a clinical reality. Sci China Life Sci doi: 10.1007/s11427-018-9438-y.

    Google Scholar 

  • Scotti, M.M., and Swanson, M.S. (2016). RNA mis-splicing in disease. Nat Rev Genet 17, 19–32.

    CAS  PubMed  Article  Google Scholar 

  • Seiler, M., Peng, S., Agrawal, A.A., Palacino, J., Teng, T., Zhu, P., Smith, P. G., Buonamici, S., Yu, L., Caesar-Johnson, S.J., et al. (2018a). Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types. Cell Rep 23, 282–296.e4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Seiler, M., Yoshimi, A., Darman, R., Chan, B., Keaney, G., Thomas, M., Agrawal, A.A., Caleb, B., Csibi, A., Sean, E., et al. (2018b). H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med 24, 497–504.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shen, X., and Corey, D.R. (2018). Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res 46, 1584–1600.

    CAS  PubMed  Article  Google Scholar 

  • Sheng, J., Zhao, Q., Zhao, J., Zhang, W., Sun, Y., Qin, P., Lv, Y., Bai, L., Yang, Q., Chen, L., et al. (2018). SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine 38, 113–126.

    PubMed  PubMed Central  Article  Google Scholar 

  • Shi, Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat Rev Mol Cell Biol 18, 655–670.

    CAS  PubMed  Article  Google Scholar 

  • Shirai, C.L., Ley, J.N., White, B.S., Kim, S., Tibbitts, J., Shao, J., Ndonwi, M., Wadugu, B., Duncavage, E.J., Okeyo-Owuor, T., et al. (2015). Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell 27, 631–643.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shirai, C.L., White, B.S., Tripathi, M., Tapia, R., Ley, J.N., Ndonwi, M., Kim, S., Shao, J., Carver, A., Saez, B., et al. (2017). Mutant U2AF1- expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun 8, 14060.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Siegfried, Z., and Karni, R. (2018). The role of alternative splicing in cancer drug resistance. Curr Opin Genets Dev 48, 16–21.

    CAS  Article  Google Scholar 

  • Silvera, D., Formenti, S.C., and Schneider, R.J. (2010). Translational control in cancer. Nat Rev Cancer 10, 254–266.

    CAS  PubMed  Article  Google Scholar 

  • Smith, C.C., Selitsky, S.R., Chai, S., Armistead, P.M., Vincent, B.G., and Serody, J.S. (2019a). Alternative tumour-specific antigens. Nat Rev Cancer 19, 465–478.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Smith, E., Zhou, W., Shindiapina, P., Sif, S., Li, C., and Baiocchi, R.A. (2018). Recent advances in targeting protein arginine methyltransferase enzymes in cancer therapy. Expert Opin Ther Target 22, 527–545.

    Article  Google Scholar 

  • Smith, M.A., Choudhary, G.S., Pellagatti, A., Choi, K., Bolanos, L.C., Bhagat, T.D., Gordon-Mitchell, S., Von Ahrens, D., Pradhan, K., Steeples, V., et al. (2019b). U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol 21, 640–650.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Song, X., Zeng, Z., Wei, H., and Wang, Z. (2018). Alternative splicing in cancers: From aberrant regulation to new therapeutics. Semin Cell Dev Biol 75, 13–22.

    CAS  PubMed  Article  Google Scholar 

  • Sotillo, E., Barrett, D.M., Black, K.L., Bagashev, A., Oldridge, D., Wu, G., Sussman, R., Lanauze, C., Ruella, M., Gazzara, M.R., et al. (2015). Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 5, 1282–1295.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Stark, R., Grzelak, M., and Hadfield, J. (2019). RNA sequencing: the teenage years. Nat Rev Genet 20, 631–656.

    CAS  PubMed  Article  Google Scholar 

  • Sun, Y., Bao, Y., Han, W., Song, F., Shen, X., Zhao, J., Zuo, J., Saffen, D., Chen, W., Wang, Z., et al. (2017). Autoregulation of RBM10 and crossregulation of RBM10/RBM5 via alternative splicing-coupled nonsensemediated decay. Nucleic Acids Res 45, 8524–8540.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Supek, F., Miñana, B., Valcárcel, J., Gabaldón, T., and Lehner, B. (2014). Synonymous mutations frequently act as driver mutations in human cancers. Cell 156, 1324–1335.

    CAS  PubMed  Article  Google Scholar 

  • Suzuki, H., Kumar, S.A., Shuai, S., Diaz-Navarro, A., Gutierrez-Fernandez, A., De Antonellis, P., Cavalli, F.M.G., Juraschka, K., Farooq, H., Shibahara, I., et al. (2019). Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature 574, 707–711.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Sveen, A., Kilpinen, S., Ruusulehto, A., Lothe, R.A., and Skotheim, R.I. (2016). Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene 35, 2413–2427.

    CAS  PubMed  Article  Google Scholar 

  • Tian, M., Shi, Y., Liu, W., and Fan, J. (2019). Immunotherapy of hepatocellular carcinoma: strategies for combinatorial intervention. Sci China Life Sci 62, 1138–1143.

    PubMed  Article  Google Scholar 

  • Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., Watt, A.T., Freier, S. M., Bennett, C.F., Sharma, A., Bubulya, P.A., et al. (2010). The nuclearretained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39, 925–938.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tsai, F.D., Lopes, M.S., Zhou, M., Court, H., Ponce, O., Fiordalisi, J.J., Gierut, J.J., Cox, A.D., Haigis, K.M., and Philips, M.R. (2015). KRas4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci USA 112, 779–784.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Uehara, T., Minoshima, Y., Sagane, K., Sugi, N.H., Mitsuhashi, K.O., Yamamoto, N., Kamiyama, H., Takahashi, K., Kotake, Y., Uesugi, M., et al. (2017). Selective degradation of splicing factor CAPERa by anticancer sulfonamides. Nat Chem Biol 13, 675–680.

    CAS  PubMed  Article  Google Scholar 

  • Uniacke, J., Holterman, C.E., Lachance, G., Franovic, A., Jacob, M.D., Fabian, M.R., Payette, J., Holcik, M., Pause, A., and Lee, S. (2012). An oxygen-regulated switch in the protein synthesis machinery. Nature 486, 126–129.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Urbanski, L.M., Leclair, N., and Anczuków, O. (2018). Alternative-splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WIREs RNA 9, e1476.

    PubMed  Article  Google Scholar 

  • Villamizar, O., Chambers, C.B., Riberdy, J.M., Persons, D.A., and Wilber, A. (2016). Long noncoding RNA Saf and splicing factor 45 increase soluble Fas and resistance to apoptosis. Oncotarget 7, 13810–13826.

    PubMed  PubMed Central  Article  Google Scholar 

  • Vo, J.N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., Wu, Y.M., Dhanasekaran, S.M., Engelke, C.G., Cao, X., et al. (2019). The landscape of circular RNA in cancer. Cell 176, 869–881.e13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wahl, M.C., and Lührmann, R. (2015). SnapShot: spliceosome dynamics I. Cell 161, 1474–1474.e1.

    CAS  PubMed  Article  Google Scholar 

  • Wahl, M.C., Will, C.L., and Lührmann, R. (2009). The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718.

    CAS  PubMed  Article  Google Scholar 

  • Wang, E., Lu, S.X., Pastore, A., Chen, X., Imig, J., Chun-Wei Lee, S., Hockemeyer, K., Ghebrechristos, Y.E., Yoshimi, A., Inoue, D., et al. (2019). Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell 35, 369–384.e7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Wang, F., Fu, X., Chen, P., Wu, P., Fan, X., Li, N., Zhu, H., Jia, T.T., Ji, H., Wang, Z., et al. (2017). SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 27, 540–558.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, L., Brooks, A.N., Fan, J., Wan, Y., Gambe, R., Li, S., Hergert, S., Yin, S., Freeman, S.S., Levin, J.Z., et al. (2016). Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia. Cancer Cell 30, 750–763.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, Y., Chen, D., Qian, H., Tsai, Y.S., Shao, S., Liu, Q., Dominguez, D., and Wang, Z. (2014). The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 26, 374–389.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, Y., Cheong, C.G., Tanaka Hall, T.M., and Wang, Z. (2009). Engineering splicing factors with designed specificities. Nat Methods 6, 825–830.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, Y., Hu, W., and Yuan, Y. (2018). Protein arginine methyltransferase 5 (PRMT5) as an anticancer target and its inhibitor discovery. J Med Chem 61, 9429–9441.

    CAS  PubMed  Article  Google Scholar 

  • Wang, Z., and Burge, C.B. (2008). Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Williamson, L., Saponaro, M., Boeing, S., East, P., Mitter, R., Kantidakis, T., Kelly, G.P., Lobley, A., Walker, J., Spencer-Dene, B., et al. (2017). UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168, 843–855.e13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Witkiewicz, A.K., McMillan, E.A., Balaji, U., Baek, G.H., Lin, W.C., Mansour, J., Mollaee, M., Wagner, K.U., Koduru, P., Yopp, A., et al. (2015). Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6, 6744.

    CAS  PubMed  Article  Google Scholar 

  • Wu, T., and Fu, X.D. (2015). Genomic functions of U2AF in constitutive and regulated splicing. RNA Biol 12, 479–485.

    PubMed  PubMed Central  Article  Google Scholar 

  • Yan, X., Hu, Z., Feng, Y., Hu, X., Yuan, J., Zhao, S.D., Zhang, Y., Yang, L., Shan, W., He, Q., et al. (2015). Comprehensive genomic characterization of long non-coding RNAs across human cancers. Cancer Cell 28, 529–540.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang, Y., and Bedford, M.T. (2012). Protein arginine methyltransferases and cancer. Nat Rev Cancer 13, 37–50.

    CAS  PubMed  Article  Google Scholar 

  • Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., Jin, Y., Yang, Y., Chen, L.L., Wang, Y., et al. (2017). Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27, 626–641.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang, Y., Sun, B.F., Xiao, W., Yang, X., Sun, H.Y., Zhao, Y.L., and Yang, Y. G. (2015). Dynamic m 6 A modification and its emerging regulatory role in mRNA splicing. Sci Bull 60, 21–32.

    CAS  Article  Google Scholar 

  • Yin, S., Gambe, R.G., Sun, J., Martinez, A.Z., Cartun, Z.J., Regis, F.F.D., Wan, Y., Fan, J., Brooks, A.N., Herman, S.E.M., et al. (2019). A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and Atm deletion. Cancer Cell 35, 283–296.e5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yoshimi, A., Lin, K.T., Wiseman, D.H., Rahman, M.A., Pastore, A., Wang, B., Lee, S.C.W., Micol, J.B., Zhang, X.J., de Botton, S., et al. (2019). Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhang, J., Ali, A.M., Lieu, Y.K., Liu, Z., Gao, J., Rabadan, R., Raza, A., Mukherjee, S., and Manley, J.L. (2019). Disease-causing mutations in SF3B1 alter splicing by disrupting interaction with SUGP1. Mol Cell 76, 82–95.e7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Zhang, J., and Manley, J.L. (2013). Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov 3, 1228–1237.

    CAS  PubMed  Article  Google Scholar 

  • Zhang, X.O., Dong, R., Zhang, Y., Zhang, J.L., Luo, Z., Zhang, J., Chen, L. L., and Yang, L. (2016). Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26, 1277–1287.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhao, J., Sun, Y., Huang, Y., Song, F., Huang, Z., Bao, Y., Zuo, J., Saffen, D., Shao, Z., Liu, W., et al. (2017). Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci Rep 7, 40488.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhao, Y.Y., Mao, M.W., Zhang, W.J., Wang, J., Li, H.T., Yang, Y., Wang, Z., and Wu, J.W. (2018). Expanding RNA binding specificity and affinity of engineered PUF domains. Nucleic Acids Res 46, 4771–4782.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhao, Z., Xiao, X., Saw, P.E., Wu, W., Huang, H., Chen, J., and Nie, Y. (2020). Chimeric antigen receptor T cells in solid tumors: a war against the tumor microenvironment. Sci China Life Sci 63, 180–205.

    CAS  PubMed  Article  Google Scholar 

  • Zhou, X., Wang, R., Li, X., Yu, L., Hua, D., Sun, C., Shi, C., Luo, W., Rao, C., Jiang, Z., et al. (2019). Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B. J Clin Invest 129, 676–693.

    PubMed  PubMed Central  Article  Google Scholar 

  • Zhou, Z., and Fu, X.D. (2013). Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 122, 191–207.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhou, Z., Qiu, J., Liu, W., Zhou, Y., Plocinik, R.M., Li, H., Hu, Q., Ghosh, G., Adams, J.A., Rosenfeld, M.G., et al. (2012). The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell 71, 872.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81871878 and 31371299 to Y.B.W.; 31730110, 31661143031, and 31570823 to Z.F.W.). Z.F.W. is also supported by the type A CAS Pioneer 100-Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongbo Wang or Zefeng Wang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Bao, Y., Zhang, S. et al. Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. Sci. China Life Sci. 63, 469–484 (2020). https://doi.org/10.1007/s11427-019-1605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1605-0

Keywords

  • splicing
  • alternative splicing
  • cancer
  • RNA therapeutics