Skip to main content
Log in

Growth factor regulatory system: a new system for not truly recognized organisms

  • Insight
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Fu, X., Shen, Z., Chen, Y., Xie, J., Guo, Z., Zhang, M., and Sheng, Z. (1998). Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns. Lancet 352, 1661–1664.

    Article  CAS  Google Scholar 

  • Fu, X., Sun, X., Li, X., and Sheng, Z. (2001). Dedifferentiation of epidermal cells to stem cells in vivo. Lancet 358, 1067–1068.

    Article  CAS  Google Scholar 

  • Haffner, D., Emma, F., Eastwood, D.M., Duplan, M.B., Bacchetta, J., Schnabel, D., Wicart, P., Bockenhauer, D., Santos, F., Levtchenko, E., et al. (2019). Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15, 435–455.

    Article  Google Scholar 

  • Itoh, N., and Ornitz, D.M. (2011). Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 149, 121–130.

    Article  CAS  Google Scholar 

  • Jonker, J.W., Suh, J.M., Atkins, A.R., Ahmadian, M., Li, P., Whyte, J., He, M., Juguilon, H., Yin, Y.Q., Phillips, C.T., et al. (2012). A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394.

    Article  CAS  Google Scholar 

  • Kale, S., Biermann, S., Edwards, C., Tarnowski, C., Morris, M., and Long, M.W. (2000). Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 18, 954–958.

    Article  CAS  Google Scholar 

  • Li, S., Zhu, Z., Xue, M., Yi, X., Liang, J., Niu, C., Chen, G., Shen, Y., Zhang, H., Zheng, J., et al. (2019). Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochim Biophys Acta Mol Basis Dis 1865, 1241–1252.

    Article  CAS  Google Scholar 

  • Li, X. (2019). The FGF metabolic axis. Front Med 13, 511–530.

    Article  Google Scholar 

  • Lin, Z., Pan, X., Wu, F., Ye, D., Zhang, Y., Wang, Y., Jin, L., Lian, Q., Huang, Y., Ding, H., et al. (2015). Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 131, 1861–1871.

    Article  CAS  Google Scholar 

  • Lin, Z., Tian, H., Lam, K.S.L., Lin, S., Hoo, R.C.L., Konishi, M., Itoh, N., Wang, Y., Bornstein, S.R., Xu, A., et al. (2013). Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 17, 779–789.

    Article  CAS  Google Scholar 

  • Muggianu, F., Benso, A., Bardini, R., Hu, E., Politano, G., and Carlo, S.D. (2018). Modeling biological complexity using Biology System Description Language (BiSDL). In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 1, 713–717.

  • Ott, S.M. (2015). Bone cells, sclerostin, and FGF23: what’s bred in the bone will come out in the flesh. Kidney Int 87, 499–501.

    Article  CAS  Google Scholar 

  • Pan, X., Shao, Y., Wu, F., Wang, Y., Xiong, R., Zheng, J., Tian, H., Wang, B., Wang, Y., Zhang, Y., et al. (2018). FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metab 27, 1323–1337.e5.

    Article  CAS  Google Scholar 

  • Suh, J.M., Jonker, J.W., Ahmadian, M., Goetz, R., Lackey, D., Osborn, O., Huang, Z., Liu, W., Yoshihara, E., van Dijk, T.H., et al. (2014). Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439.

    Article  CAS  Google Scholar 

  • Yie, J., Wang, W., Deng, L., Tam, L.T., Stevens, J., Chen, M.M., Li, Y., Xu, J., Lindberg, R., Hecht, R., et al. (2012). Understanding the physical interactions in the FGF21/FGFR/β-Klotho complex: structural requirements and implications in FGF21 signaling. Chem Biol Drug Des 79, 398–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.F. acknowledges the financial support from the National Natural Science Foundation of China (81830064 and 81721092) and the National Key R&D Program of China (2017YFC1103300). J.X. acknowledges financial support from the National Natural Science Foundation of China (81722028 and 81972150). X.L. acknowledges the financial support from the National Key R&D Program of China (2017YFA0506000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaokun Li or Xiaobing Fu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Lin, Z., Qin, H. et al. Growth factor regulatory system: a new system for not truly recognized organisms. Sci. China Life Sci. 63, 443–446 (2020). https://doi.org/10.1007/s11427-019-1590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1590-x

Navigation