Skip to main content
Log in

Decreasing intraocular pressure significantly improves retinal vessel density, cytoarchitecture and visual function in rodent oxygen induced retinopathy

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

We attempted to explore a noninvasive, easily applicable and economically affordable therapy for retinopathy of prematurity (ROP). Rat pups were raised in 80% oxygen from postnatal day 7 to P12, and returned to room air. Travoprost eye drops were administered twice a day for 7 days, to reduce intraocular pressure (IOP) by about 20%. Immunohistochemical staining was performed to visualize vessel endothelial cells, to analyze retinal neurons and cytoarchitecture. Behavioral experiments were carried out to test visual acuity and contrast sensitivity. At the end of the 7-day treatment, the number of vessels extending to the vitreous body was significantly reduced and retinal vessel density increased. This improvement was maintained to the end of the 12th week. In the central retina of the model group, the horizontal cells were completely wiped out, the outer plexiform layer was undetectable, and the rod bipolar cell dendrites sprouted into the outer nuclear layer. The treatment partially reverted these architectural changes. Most importantly, behavioral experiments revealed significantly improved visual acuity and contrast sensitivity in the treated group. Therefore, reducing IOP could potentially serve as a safe and economical measure to treat ROP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asano, M.K., and Dray, P.B. (2014). Retinopathy of prematurity. Dis Mon 60, 282–291.

    PubMed  Google Scholar 

  • Ashton, N. (1954). Pathological basis of retrolental fibroplasia. Br J Ophthalmol 38, 385–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashton, N., Ward, B., Serpell, G. (1953). Role of oxygen in the genesis of retrolental fibroplasia.; Ashton, N., Ward, B., and Serpell, G. ((1953))). Role of oxygen in the genesis of retrolental fibroplasia: a preliminary report. Br J Ophthalmol 37, 513–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, K. (1951). Intensive oxygen therapy as a possible cause of retrolental fibroplasia; a clinical approach. Med J Aust 2, 48.

    CAS  PubMed  Google Scholar 

  • Chung, E.J., Kim, J.H., Ahn, H.S., and Koh, H.J. (2007). Combination of laser photocoagulation and intravitreal bevacizumab (Avastin®) for aggressive zone I retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 245, 1727–1730.

    CAS  PubMed  Google Scholar 

  • Connor, K.M., Krah, N.M., Dennison, R.J., Aderman, C.M., Chen, J., Guerin, K.I., Sapieha, P., Stahl, A., Willett, K.L., and Smith, L.E.H. (2009). Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4, 1565–1573.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Early Treatment for Retinopathy of Prematurity Cooperative Group. (2003). Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol (Chicago, Ill: 1960) 121, 1684.

    Google Scholar 

  • Elsas, F., Botsford, J., Braune, K., Cassady, G., Jones, J., Kimble, J., Kline, L., Lampton, G., Witherspoon, D., and Young, M. (1988). Multicenter trial of cryotherapy for retinopathy of prematurity: preliminary results. Pediatrics 81, 697–706.

    Google Scholar 

  • Elsas, F, Collins, M, Jones, J, Kimble, J, Kline, L, Witherspoon, D, Roth, A, Demorest, B, Gilbert, W, and Plotsky, D (2001). Multicenter trial of cryotherapy for retinopathy of prematurity. Arch Ophthalmol 119, 1110–1118.

    Google Scholar 

  • Euler, T., and Wässle, H. (1995). Immunocytochemical identification of cone bipolar cells in the rat retina. J Comp Neurol 361, 461–478.

    CAS  PubMed  Google Scholar 

  • Friedenwald, J.S., Owens, W.C., and Owens, E.U. (1951). Retrolental fibroplasia in premature infants. III. The pathology of the disease. Trans Am Soc Ophthalmol Otolaryngol Allergy 49, 207–234.

    PubMed  Google Scholar 

  • Ghosh, K.K., Bujan, S., Haverkamp, S., Feigenspan, A., and Wässle, H. (2004). Types of bipolar cells in the mouse retina. J Comp Neurol 469, 70–82.

    PubMed  Google Scholar 

  • Goldenberg, R.L., Culhane, J.F., Iams, J.D., and Romero, R. (2008). Epidemiology and causes of preterm birth. Lancet 371, 75–84.

    PubMed  PubMed Central  Google Scholar 

  • Kolb, H. (1974). The connections between horizontal cells and photoreceptors in the retina of the cat: electron microscopy of Golgi preparations. J Comp Neurol 155, 1–14.

    CAS  PubMed  Google Scholar 

  • Krause, A.C. (1946). Congenital encephalo-ophthalmic dysplasia. Arch Ophthalmol 36, 387–444.

    CAS  Google Scholar 

  • Lange, C., Ehlken, C., Stahl, A., Martin, G., Hansen, L., and Agostini, H.T. (2009). Kinetics of retinal vaso-obliteration and neovascularisation in the oxygen-induced retinopathy (OIR) mouse model. Graefes Arch Clin Exp Ophthalmol 247, 1205–1211.

    CAS  PubMed  Google Scholar 

  • Liu, L., Li, X., Killer, H.E., Cao, K., Li, J., and Wang, N. (2019). Changes in retinal and choroidal morphology after cerebrospinal fluid pressure reduction: a Beijing iCOP study. Sci China Life Sci 62, 268–271.

    CAS  PubMed  Google Scholar 

  • Lorenz, B., Spasovska, K., Elflein, H., and Schneider, N. (2009). Wide-field digital imaging based telemedicine for screening for acute retinopathy of prematurity (ROP). Six-year results of a multicentre field study. Graefes Arch Clin Exp Ophthalmol 247, 1251–1262.

    PubMed  PubMed Central  Google Scholar 

  • McGill, T.J., Douglas, R.M., Lund, R.D., and Prusky, G.T. (2004). Quantification of spatial vision in the Royal College of Surgeons rat. Invest Ophthalmol Vis Sci 45, 932–936.

    PubMed  Google Scholar 

  • McNamara, J.A., Tasman, W., Brown, G.C., and Federman, J.L. (1991). Laser photocoagulation for stage 3+ retinopathy of prematurity. Ophthalmology 98, 576–580.

    CAS  PubMed  Google Scholar 

  • Mintz-Hittner, H.A., Kennedy, K.A., Chuang, A.Z., and Chuang, A.Z. (2011). Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364, 603–615.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz, A., Hansen, R., and Fulton, A. (2005). Early ametropia and rod photoreceptor function in retinopathy of prematurity. Optom Vis Sci 82, 307–317.

    PubMed  Google Scholar 

  • O’Connor, A.R., Stephenson, T.J., Johnson, A., Tobin, M.J., Ratib, S., Moseley, M., and Fielder, A.R. (2004). Visual function in low birthweight children. Br J Ophthalmol 88, 1149–1153.

    PubMed  PubMed Central  Google Scholar 

  • Patz, A. (1954). Oxygen studies in retrolental fibroplasia. IV. Clinical and experimental observations. Am J Ophthalmol 38, 291–308.

    CAS  PubMed  Google Scholar 

  • Patz, A. (1982). Clinical and experimental studies on retinal neovascularization. Am J Ophthalmol 94, 715–743.

    CAS  PubMed  Google Scholar 

  • Patz, A., Eastham, A., Higginbotham, D.H., and Kleh, T. (1953). Oxygen studies in retrolental fibroplasia. II. The production of the microscopic changes of retrolental fibroplasia in experimental animals. Am J Ophthalmol 36, 1511–1522.

    CAS  PubMed  Google Scholar 

  • Patz, A., Hoeck, L.E., and De La Cruz, E. (1952). Studies on the effect of high oxygen administration in retrolental fibroplasia. I. Nursery observations. Am J Ophthalmol 35, 1248–1253.

    CAS  PubMed  Google Scholar 

  • Peichl, L., and Gonzalez-Soriano, J. (1993). Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. J Neurosci 13, 4091–4100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penn, J.S., Tolman, B.L., and Lowery, L.A. (1993). Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34, 576–585.

    CAS  PubMed  Google Scholar 

  • Prusky, G.T., West, P.W.R., and Douglas, R.M. (2000). Behavioral assessment of visual acuity in mice and rats. Vis Res 40, 2201–2209.

    CAS  PubMed  Google Scholar 

  • Qiao, L., Zhang, X., Jan, C., Li, X., Li, M., and Wang, H. (2019). Macular retinal thickness and flow density change by optical coherence tomography angiography after posterior scleral reinforcement. Sci China Life Sci 62, 930–936.

    PubMed  Google Scholar 

  • Ren, R., Li, Y., Liu, Z., Liu, K., and He, S. (2012). Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 53, 1003–1011.

    CAS  PubMed  Google Scholar 

  • Ricci, B. (1990). Oxygen-induced retinopathy in the rat model. Doc Ophthalmol 74, 171–177.

    CAS  PubMed  Google Scholar 

  • Ricci, B., Calogero, G., Caprilli, A., and Quaranta-Leoni, F.M. (1991). Reduced severity of oxygen-induced retinopathy in the newborn rat after topical administration of timolol maleate. Doc Ophthalmol 77, 47–56.

    CAS  PubMed  Google Scholar 

  • Sandman, D., Boycott, B.B., and Peichl, L. (1996). The horizontal cells of artiodactyl retinae: a comparison with Cajal’s descriptions. Vis Neurosci 13, 735–746.

    Google Scholar 

  • Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah, P.K., Narendran, V., Tawansy, K.A., Raghuram, A., and Narendran, K. (2007). Intravitreal bevacizumab (Avastin) for post laser anterior segment ischemia in aggressive posterior retinopathy of prematurity. Ind J Ophthalmol 55, 75–76.

    Google Scholar 

  • Smith, L.E.H. (2003). Pathogenesis of retinopathy of prematurity. Semin Neonatol 8, 469–473.

    PubMed  Google Scholar 

  • Smith, L.E., Wesolowski, E., Mclellan, A., Kostyk, S.K., D’amato, R., Sullivan, R., and D’amore, P.A. (1994). Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35, 101–111.

    CAS  PubMed  Google Scholar 

  • Stahl, A., Krohne, T.U., Eter, N., Oberacher-Velten, I., Guthoff, R., Meltendorf, S., Ehrt, O., Aisenbrey, S., Roider, J., Gerding, H., et al. (2018). Comparing alternative ranibizumab dosages for safety and efficacy in retinopathy of prematurity. JAMA Pediatr 172, 278–286.

    PubMed  PubMed Central  Google Scholar 

  • Suzuki, H., and Pinto, L. (1986). Response properties of horizontal cells in the isolated retina of wild- type and pearl mutant mice. J Neurosci 6, 1122–1128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szél, Á., and Röhlich, P. (1992). Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res 55, 47–52.

    PubMed  Google Scholar 

  • Wang, X., Shen, K., Lu, F., and He, S. (2019). Long-lasting impairments in rodent oxygen-induced retinopathy measured by retinal vessel density and visual function. Sci China Life Sci 62, 681–690.

    CAS  PubMed  Google Scholar 

  • Xin, C., Tian, N., Li, M., Wang, H., and Wang, N. (2018). Mechanism of the reconstruction of aqueous outflow drainage. Sci China Life Sci 61, 534–540.

    PubMed  Google Scholar 

  • Zhang, J., Jia, H., Wang, J., Xiong, Y., Li, J., Li, X., Zhao, J., Zhang, X., You, Q., Zhu, G., et al. (2019). A novel deletion mutation, c.1296delT in the BCOR gene, is associated with oculo-facio-cardio-dental syndrome. Sci China Life Sci 62, 119–125.

    CAS  PubMed  Google Scholar 

  • Zhang, X., Yuan, Q., and Gao, X. (2018). Assessment of the MT1-MMP expression level of different cell lines by the naked eye. Sci China Life Sci 61, 492–500.

    CAS  PubMed  Google Scholar 

  • Zhou, Y., Xiao, C., and Pu, M. (2017). High glucose levels impact visual response properties of retinal ganglion cells in C57 mice—An in vitro physiological study. Sci China Life Sci 60, 1428–1435.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Jiaying Ju for technical support. This work was funded by a key project of the National Natural Science Foundation of China (31030036) to SH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigang He.

Ethics declarations

The author(s) declare that they have no conflict of interest. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, R., Wang, X., Shen, K. et al. Decreasing intraocular pressure significantly improves retinal vessel density, cytoarchitecture and visual function in rodent oxygen induced retinopathy. Sci. China Life Sci. 63, 290–300 (2020). https://doi.org/10.1007/s11427-018-9559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9559-x

Keywords

Navigation