Skip to main content
Log in

A comprehensive census of lake microbial diversity on a global scale

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Despite recent interest in microbial diversity and community structure of lakes across various spatial scales, a global biogeographic distribution pattern and its controlling factors have not been fully disclosed. Here, we compiled and analyzed 88,334,735 environmental 16S rRNA sequences from 431 lakes across a wide range of geographical distance and environmental conditions (in particular, salinity, 0–373.3 g L−1). Our results showed that lake sediments inhabit significantly (ANOVA: P<0.001) more diverse microbial communities than lake waters. Non-metric dimensional scaling (NMDS) ordinations indicated that microbial community compositions differed distinctly among sample types (freshwater vs. saline, water vs. sediment) and geographic locations. Mantel and partial Mantel tests showed that microbial community composition in lake water was significantly (P=0.001) correlated with geographic distance, salinity, and pH. Statistical analyses based on neutral community and null models indicated that stochastic processes may play predominant roles in shaping the microbial biogeographic distribution patterns in the studied global lake waters. The dispersal-related stochasticity (e.g., homogenizing dispersal) exhibited a stronger influence on the distribution of microbial community in freshwater lakes than in saline lakes. Overall, this work expands our understanding of the impact of geographic distance, environmental conditions, and stochastic processes on microbial distribution in global lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R., O’Reilly, C.M., Zagarese, H., Baines, S.B., Hessen, D.O., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Van Donk, E., et al. (2009). Lakes as sentinels of climate change. Limnol Oceanogr 54, 2283–2297.

    PubMed  PubMed Central  Google Scholar 

  • Auguet, J.C., Barberan, A., and Casamayor, E.O. (2009). Global ecological patterns in uncultured Archaea. ISME J 4, 182–190.

    PubMed  Google Scholar 

  • Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. (2018). QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints 6, e27295v27292.

    Google Scholar 

  • Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, J.M., and Knight, T.M. (2013). Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol Lett 16, 17–26.

    PubMed  Google Scholar 

  • Chase, J.M., and Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc B-Biol Sci 366, 2351–2363.

    Google Scholar 

  • Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., and Salles, J.F. (2015). Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci USA 112, E1326–E1332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, H., Jiang, H., Yu, B., Liu, X., and Zhang, C. (2010). Impacts of environmental change and human activity on microbial ecosystems on the Tibetan Plateau, NW China. GSA Today 20, 4–10.

    Google Scholar 

  • Edgar, R.C. (2017). Accuracy of microbial community diversity estimated by closed- and open-reference OTUs. PeerJ 5, e3889.

    PubMed  PubMed Central  Google Scholar 

  • Falkowski, P.G., Fenchel, T., and Delong, E.F. (2008). The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039.

    CAS  PubMed  Google Scholar 

  • Hanson, C.A., Fuhrman, J.A., Horner-Devine, M.C., and Martiny, J.B.H. (2012). Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10, 497–506.

    CAS  PubMed  Google Scholar 

  • Harrison, J.P., Gheeraert, N., Tsigelnitskiy, D., and Cockell, C.S. (2013). The limits for life under multiple extremes. Trends MicroBiol 21, 204–212.

    CAS  PubMed  Google Scholar 

  • Hayden, C.J., and Beman, J.M. (2016). Microbial diversity and community structure along a lake elevation gradient in Yosemite National Park, California, USA. Environ Microbiol 18, 1782–1791.

    PubMed  Google Scholar 

  • Jiang, H., Dong, H., Deng, S., Yu, B., Huang, Q., and Wu, Q. (2009). Response of archaeal community structure to environmental changes in lakes on the Tibetan Plateau, northwestern China. Geomicrobiol J 26, 289–297.

    CAS  Google Scholar 

  • Jiang, H., Dong, H., Yu, B., Liu, X., Li, Y., Ji, S., and Zhang, C.L. (2007). Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9, 2603–2621.

    CAS  PubMed  Google Scholar 

  • Jiang, H., Huang, Q., Deng, S., Dong, H., and Yu, B. (2010). Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles 14, 367–376.

    PubMed  Google Scholar 

  • Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O., Stegen, J.C., Vellend, M., Boyle, B., Anderson, M.J., et al. (2011). Disentangling the drivers of diversity along latitudinal and elevational gradients. Science 333, 1755–1758.

    CAS  PubMed  Google Scholar 

  • Lauber, C.L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75, 5111–5120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Zeng, J., Ren, L., Wang, J., Xing, P., and Wu, Q.L. (2017). Contrasting patterns of diversity of abundant and rare bacterioplankton in freshwater lakes along an elevation gradient. Limnol Oceanogr 62, 1570–1585.

    Google Scholar 

  • Liao, J., Cao, X., Wang, J., Zhao, L., Sun, J., Jiang, D., and Huang, Y. (2017). Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnol Oceanogr 62, 723–735.

    Google Scholar 

  • Liu, L., Yang, J., Yu, Z., and Wilkinson, D.M. (2015). The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9, 2068–2077.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Priscu, J.C., Xiong, J., Conrad, R., Vick-Majors, T., Chu, H., and Hou, J. (2016). Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol 92, fiw033.

    PubMed  Google Scholar 

  • Liu, Y., Yao, T., Jiao, N., Zhu, L., Hu, A., Liu, X., Gao, J., and Chen, Z.Q. (2013). Salinity impact on bacterial community composition in five high-altitude lakes from the Tibetan plateau, Western China. Geomicrobiol J 30, 462–469.

    CAS  Google Scholar 

  • Logares, R., Lindström, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., and Bertilsson, S. (2013). Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J 7, 937–948.

    CAS  PubMed  Google Scholar 

  • Lozupone, C.A., and Knight, R. (2007). Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104, 11436–11440.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D., and Horner-Devine, M.C. (2011). Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci USA 108, 7850–7854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martiny, J.B.H., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, M.C., Kane, M., Krumins, J.A., Kuske, C.R., et al. (2006). Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4, 102–112.

    CAS  PubMed  Google Scholar 

  • Moran-Reyna, A., and Coker, J.A. (2014). The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000 Res 3, 168.

    Google Scholar 

  • Newton, R.J., Jones, S.E., Eiler, A., McMahon, K.D., and Bertilsson, S. (2011). A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75, 14–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niño-García, J.P., Ruiz-González, C., and Del Giorgio, P.A. (2016). Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10, 1755–1766.

    PubMed  PubMed Central  Google Scholar 

  • Oren, A. (2008). Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4, 2.

    PubMed  PubMed Central  Google Scholar 

  • Oren, A. (2011). Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13, 1908–1923.

    CAS  PubMed  Google Scholar 

  • Ostman, O., Drakare, S., Kritzberg, E.S., Langenheder, S., Logue, J.B., and Lindström, E.S. (2010). Regional invariance among microbial communities. Ecol Lett 13, 118–127.

    PubMed  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: machine learning in python. J Mach Lear Res 12, 2825–2830.

    Google Scholar 

  • Ren, L., Jeppesen, E., He, D., Wang, J., Liboriussen, L., Xing, P., and Wu, Q.L. (2015). pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly. Appl Environ Microbiol 81, 3104–3114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roguet, A., Laigle, G.S., Therial, C., Bressy, A., Soulignac, F., Catherine, A., Lacroix, G., Jardillier, L., Bonhomme, C., Lerch, T.Z., et al. (2015). Neutral community model explains the bacterial community assembly in freshwater lakes. FEMS Microbiol Ecol 91, fiv125.

    PubMed  Google Scholar 

  • Romina Schiaffino, M., Unrein, F., Gasol, J.M., Massana, R., Balagué, V., and Izaguirre, I. (2011). Bacterial community structure in a latitudinal gradient of lakes: the roles of spatial versus environmental factors. Freshw Biol 56, 1973–1991.

    Google Scholar 

  • Sloan, W.T., Lunn, M., Woodcock, S., Head, I.M., Nee, S., and Curtis, T.P. (2006). Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8, 732–740.

    PubMed  Google Scholar 

  • Souffreau, C., Van der Gucht, K., van Gremberghe, I., Kosten, S., Lacerot, G., Lobão, L.M., de Moraes Huszar, V.L., Roland, F., Jeppesen, E., Vyverman, W., et al. (2015). Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a &gt; 6000 km latitudinal gradient in South America. Environ Microbiol 17, 2336–2351.

    PubMed  Google Scholar 

  • Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., and Konopka, A. (2013). Quantifying community assembly processes and identifying features that impose them. ISME J 7, 2069–2079.

    PubMed  PubMed Central  Google Scholar 

  • Stegen, J.C., Lin, X., Fredrickson, J.K., and Konopka A.E. (2015). Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 6, 370.

    PubMed  PubMed Central  Google Scholar 

  • Stegen, J.C., Lin, X., Konopka, A.E., and Fredrickson, J.K. (2012). Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6, 1653–1664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tranvik, L.J., Downing, J.A., Cotner, J.B., Loiselle, S.A., Striegl, R.G., Ballatore, T.J., Dillon, P., Finlay, K., Fortino, K., Knoll, L.B., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54, 2298–2314.

    CAS  Google Scholar 

  • Van der Gucht, K., Cottenie, K., Muylaert, K., Vloemans, N., Cousin, S., Declerck, S., Jeppesen, E., Conde-Porcuna, J.M., Schwenk, K., Zwart, G., et al. (2007). The power of species sorting: local factors drive bacterial community composition over a wide range of spatial scales. Proc Natl Acad Sci USA 104, 20404–20409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Shen, J., Wu, Y., Tu, C., Soininen, J., Stegen, J.C., He, J., Liu, X., Zhang, L., and Zhang, E. (2013). Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7, 1310–1321.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Soininen, J., Zhang, Y., Wang, B., Yang, X., and Shen, J. (2012). Patterns of elevational beta diversity in micro- and macroorganisms. Glob Ecol Biogeogr 21, 743–750.

    CAS  Google Scholar 

  • Whitaker, R.J., Grogan, D.W., and Taylor, J.W. (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301, 976–978.

    CAS  PubMed  Google Scholar 

  • Whitman, T., Neurath, R., Perera, A., Chu-Jacoby, I., Ning, D., Zhou, J., Nico, P., Pett-Ridge, J., and Firestone, M. (2018). Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ Microbiol 20, 4444–4460.

    CAS  PubMed  Google Scholar 

  • Wu, Q.L., Zwart, G., Schauer, M., Kamst-van Agterveld, M.P., and Hahn, M.W. (2006). Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72, 5478–5485.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, J., Liu, Y., Lin, X., Zhang, H., Zeng, J., Hou, J., Yang, Y., Yao, T., Knight, R., and Chu, H. (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14, 2457–2466.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Q., Stegen, J.C., Yu, Y., Deng, Y., Li, X., Wu, S., Dai, L., Zhang, X., Li, J., Wang, C., et al. (2017). Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China). Mol Ecol 26, 3839–3850.

    CAS  PubMed  Google Scholar 

  • Yang, J., Jiang, H., Wu, G., Liu, W., and Zhang, G. (2016a). Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western China. Front Microbiol 7.

  • Yang, J., Ma, L.’., Jiang, H., Wu, G., and Dong, H. (2016b). Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep 6, 25078.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, Z.P., Liu, Y., Miao, L.L., Wang, F., Chu, L.M., Wang, J.L., and Liu, Z.P. (2016). Prokaryotic community structure driven by salinity and ionic concentrations in plateau lakes of the Tibetan Plateau. Appl Environ Microbiol 82, 1846–1858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Deng, Y., Zhang, P., Xue, K., Liang, Y., Van Nostrand, J.D., Yang, Y., He, Z., Wu, L., Stahl, D.A., et al. (2014). Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci USA 111, E836–E845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., and Ning, D. (2017). Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81, pii: e00002-17.

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (91751206, 41521001, 41602346, 41572328, 41630103), the 111 Program (State Administration of Foreign Experts Affairs & the Ministry of Education of China, grant B18049), and Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan), and State Key Laboratory of Biogeology and Environmental Geology, CUG (GBL11805). We are grateful to Mr. Wen Liu, Ms. Jianrong Huang, and Ms. Xiaoxi Sun from China University of Geosciences (Wuhan) for data collection, and Dr. Qingyun Yan from Sun Yat-Sen University for providing the R script of null-model statistics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongchen Jiang or Hailiang Dong.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Jiang, H., Dong, H. et al. A comprehensive census of lake microbial diversity on a global scale. Sci. China Life Sci. 62, 1320–1331 (2019). https://doi.org/10.1007/s11427-018-9525-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9525-9

Keywords

Navigation