Skip to main content
Log in

Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Many key cellular functions are regulated by the interplay of three distinct cytoskeletal networks, made of actin filaments, microtubules, and intermediate filaments (IFs), which is a hitherto poorly investigated area of research. However, there are growing evidence in the last few years showing that the IFs cooperate with actin filaments to exhibit strongly coupled functions. This review recapitulates our current knowledge on how the crosstalk between IFs and actin filaments modulates the migration properties, mechano-responsiveness and signaling transduction of cells, from both biophysical and biochemical point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buxboim, A., Swift, J., Irianto, J., Spinler, K.R., Dingal, P.C.D.P., Athirasala, A., Kao, Y.R.C., Cho, S., Harada, T., Shin, J.W., et al. (2014). Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24, 1909–1917.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, L., and Goldman, R.D. (2004). Intermediate filaments mediate cytoskeletal crosstalk. Nat Rev Mol Cell Biol 5, 601–613.

    CAS  PubMed  Google Scholar 

  • Cheng, F., and Eriksson, J.E. Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring HarbRespect Biol 2017, 9.

  • Cleary, R.A., Wang, R., Waqar, O., Singer, H.A., and Tang, D.D. (2014). Role of c-Abl tyrosine kinase in smooth muscle cell migration. Am J Physiol Cell Physiol 306, C753–C761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Pascalis, C., Pérez-González, C., Seetharaman, S., Boëda, B., Vianay, B., Burute, M., Leduc, C., Borghi, N., Trepat, X., and Etienne-Manneville, S. (2018). Intermediate filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J Cell Biol 217, 3031–3044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, M., Mohanan, S., Polyak, E., and Chacko, S. (2007). Caldesmon is necessary for maintaining the actin and intermediate filaments in cultured bladder smooth muscle cells. Cell Motil Cytoskel 64, 951–965.

    CAS  Google Scholar 

  • Dupin, I., Camand, E., and Etienne-Manneville, S. (2009). Classical cadherins control nucleus and centrosome position and cell polarity. J Cell Biol 185, 779–786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupin, I., Sakamoto, Y., and Etienne-Manneville, S. (2011). Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J Cell Sci 124, 865–872.

    CAS  PubMed  Google Scholar 

  • Eckes, B., Dogic, D., Colucci-Guyon, E., Wang, N., Maniotis, A., Ingber, D., Merckling, A., Langa, F., Aumailley, M., Delouvee, A., Koteliansky, V., Babinet, C., and Krieg, T. (1998). Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci 111(Pt 13), 1897–1907.

    CAS  PubMed  Google Scholar 

  • Esue, O., Carson, A.A., Tseng, Y., and Wirtz, D. (2006). A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J Biol Chem 281, 30393–30399.

    CAS  PubMed  Google Scholar 

  • Etienne-Manneville, S. (2018). Cytoplasmic intermediate filaments in cell biology. Ann Rev Cell Dev Biol 34, 1–28.

    CAS  Google Scholar 

  • Folker, E.S., Ostlund, C., Luxton, G.W., Worman, H.J., and Gundersen, G. G. (2011). Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci USA 108, 131–136.

    CAS  PubMed  Google Scholar 

  • Fujiwara, S., Ohashi, K., Mashiko, T., Kondo, H., and Mizuno, K. (2016). Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell 27, 954–966.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, Z., Ding, L., Burckhardt, C.J., Lowery, J., Zaritsky, A., Sitterley, K., Mota, A., Costigliola, N., Starker, C.G., Voytas, D.F., et al. (2016). Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst 3, 500–501.

    CAS  PubMed  Google Scholar 

  • Gerashchenko, M.V., Chernoivanenko, I.S., Moldaver, M.V., and Minin, A. A. (2009). Dynein is a motor for nuclear rotation while vimentin IFs is a “brake”. Cell Biol Int 33, 1057–1064.

    CAS  PubMed  Google Scholar 

  • Green, K.J., Talian, J.C., and Goldman, R.D. (1986). Relationship between intermediate filaments and microfilaments in cultured fibroblasts: evidence for common foci during cell spreading. Cell Motil Cytoskel 6, 406–418.

    CAS  Google Scholar 

  • Green, K.J., Geiger, B., Jones, J.C., Talian, J.C., and Goldman, R.D. (1987). The relationship between intermediate filaments and microfilaments before and during the formation of desmosomes and adherens-type junctions in mouse epidermal keratinocytes. J Cell Biol 104, 1389–1402.

    CAS  PubMed  Google Scholar 

  • Gregor, M., Osmanagic-Myers, S., Burgstaller, G., Wolfram, M., Fischer, I., Walko, G., Resch, G.P., Jörgl, A., Herrmann, H., and Wiche, G. (2014). Mechanosensing through focal adhesion-anchored intermediate filaments. FASEB J 28, 715–729.

    CAS  PubMed  Google Scholar 

  • Gyoeva, F.K., and Gelfand, V.I. (1991). Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature 353, 445–448.

    CAS  PubMed  Google Scholar 

  • Havel, L.S., Kline, E.R., Salgueiro, A.M., and Marcus, A.I. (2015). Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene 34, 1979–1990.

    CAS  PubMed  Google Scholar 

  • Helfand, B.T., Chang, L., and Goldman, R.D. (2004). Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117, 133–141.

    CAS  PubMed  Google Scholar 

  • Helfand, B.T., Mendez, M.G., Murthy, S.N.P., Shumaker, D.K., Grin, B., Mahammad, S., Aebi, U., Wedig, T., Wu, Y.I., Hahn, K.M., et al. (2011). Vimentin organization modulates the formation of lamellipodia. Mol Biol Cell 22, 1274–1289.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helfand, B.T., Mikami, A., Vallee, R.B., and Goldman, R.D. (2002). A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 157, 795–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hesse, M., Magin, T.M., and Weber, K. (2001). Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J Cell Sci 114, 2569–2575.

    CAS  PubMed  Google Scholar 

  • Holaska, J.M., Kowalski, A.K., and Wilson, K.L. (2004). Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol 2, e231.

    PubMed  PubMed Central  Google Scholar 

  • Ivaska, J., Pallari, H.M., Nevo, J., and Eriksson, J.E. (2007). Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res 313, 2050–2062.

    CAS  PubMed  Google Scholar 

  • Janmey, P.A., Euteneuer, U., Traub, P., and Schliwa, M. (1991). Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113, 155–160.

    CAS  PubMed  Google Scholar 

  • Jiu, Y., Lehtimäki, J., Tojkander, S., Cheng, F., Jäälinoja, H., Liu, X., Varjosalo, M., Eriksson, J.E., and Lappalainen, P. (2015). Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep 11, 1511–1518.

    CAS  PubMed  Google Scholar 

  • Jiu, Y., Peränen, J., Schaible, N., Cheng, F., Eriksson, J.E., Krishnan, R., and Lappalainen, P. (2017). Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci 130, 892–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanier, M.H., Kim, T., and Cooper, J.A. (2015). CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation. Mol Biol Cell 26, 4577–4588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leduc, C., and Etienne-Manneville, S. (2015). Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol 32, 102–112.

    CAS  PubMed  Google Scholar 

  • Li, J., Wang, R., Gannon, O.J., Rezey, A.C., Jiang, S., Gerlach, B.D., Liao, G., and Tang, D.D. (2016). Polo-like kinase 1 regulates vimentin phosphorylation at Ser-56 and contraction in smooth muscle. J Biol Chem 291, 23693–23703.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q.F., Spinelli, A.M., Wang, R., Anfinogenova, Y., Singer, H.A., and Tang, D.D. (2006). Critical role of vimentin phosphorylation at Ser-56 by p21-activated kinase in vimentin cytoskeleton signaling. J Biol Chem 281, 34716–34724.

    CAS  PubMed  Google Scholar 

  • Liao, G., and Gundersen, G.G. (1998). Kinesin is a candidate for crossbridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273, 9797–9803.

    CAS  PubMed  Google Scholar 

  • Liovic, M., Mogensen, M.M., and Prescott, A.R., Lane, E.B., (2003). Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J Cell Sci 116, 1417–1427.

    CAS  PubMed  Google Scholar 

  • Lobrinus, J.A., Janzer, R.C., Kuntzer, T., Matthieu, J.M., Pfend, G., Goy, J. J., and Bogousslavsky, J. (1998). Familial cardiomyopathy and distal myopathy with abnormal desmin accumulation and migration. Neuromusc Dis 8, 77–86.

    CAS  PubMed  Google Scholar 

  • Luxton, G.W.G., Gomes, E.R., Folker, E.S., Vintinner, E., and Gundersen, G.G. (2010). Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science 329, 956–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez, M.G., Restle, D., and Janmey, P.A. (2014). Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys J 107, 314–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osmanagic-Myers, S., Dechat, T., and Foisner, R. (2015). Lamins at the crossroads of mechanosignaling. Genes Dev 29, 225–237.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pallari, H.M., and Eriksson, J.E. (2006). Intermediate filaments as signaling platforms. Sci STKE 2006, pe53.

    PubMed  Google Scholar 

  • Pollard, T.D., and Borisy, G.G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465.

    CAS  PubMed  Google Scholar 

  • Prahlad, V., Yoon, M., Moir, R.D., Vale, R.D., and Goldman, R.D. (1998). Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol 143, 159–170.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, M.V., Engle, L.J., Mohan, P.S., Yuan, A., Qiu, D., Cataldo, A., Hassinger, L., Jacobsen, S., Lee, V.M.Y., Andreadis, A., et al. (2002). Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159, 279–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., Bolten, Z.T., Wagner, D.R., and Hsieh, A.H. (2017). Deformability of human mesenchymal stem cells is dependent on vimentin intermediate filaments. Ann Biomed Eng 45, 1365–1374.

    PubMed  Google Scholar 

  • Sjuve, R., Arner, A., Li, Z., Mies, B., Paulin, D., Schmittner, M., and Small, J.V. (1998). Mechanical alterations in smooth muscle from mice lacking desmin. J Musc Res Cell Motil 19, 415–429.

    CAS  Google Scholar 

  • Sullivan, T., Escalante-Alcalde, D., Bhatt, H., Anver, M., Bhat, N., Nagashima, K., Stewart, C.L., and Burke, B. (1999). Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147, 913–920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swift, J., Ivanovska, I.L., Buxboim, A., Harada, T., Dingal, P.C.D.P., Pinter, J., Pajerowski, J.D., Spinler, K.R., Shin, J.W., Tewari, M., et al. (2013). Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104.

    PubMed  PubMed Central  Google Scholar 

  • Szeverenyi, I., Cassidy, A.J., Chung, C.W., Lee, B.T.K., Common, J.E.A., Ogg, S.C., Chen, H., Sim, S.Y., Goh, W.L.P., Ng, K.W., et al. (2008). The Human Intermediate Filament Database: comprehensive information on a gene family involved in many human diseases. Hum Mutat 29, 351–360.

    CAS  PubMed  Google Scholar 

  • Tang, D.D. (2008). Intermediate filaments in smooth muscle. Am J Physiol Cell Physiol 294, C869–C878.

    CAS  PubMed  Google Scholar 

  • Tang, D.D., and Anfinogenova, Y. (2008). Physiologic properties and regulation of the actin cytoskeleton in vascular smooth muscle. J Cardiovasc Pharmacol Ther 13, 130–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, D.D. (2009). p130 Crk-associated substrate (CAS) in vascular smooth muscle. J Cardiovasc Pharmacol Ther 14, 89–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, D.D. (2015). Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 16, 134.

    PubMed  PubMed Central  Google Scholar 

  • Tang, D.D., and Gerlach, B.D. (2017). The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 18, 54.

    PubMed  PubMed Central  Google Scholar 

  • Wang, R., Li, Q., and Tang, D.D. (2006). Role of vimentin in smooth muscle force development. Am J Physiol Cell Physiol 291, C483–C489.

    CAS  PubMed  Google Scholar 

  • Wang, R., Li, Q.F., Anfinogenova, Y., and Tang, D.D. (2007). Dissociation of Crk-associated substrate from the vimentin network is regulated by p21-activated kinase on ACh activation of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 292, L240–L248.

    CAS  PubMed  Google Scholar 

  • Weber, K.L., and Bement, W.M. (2002). F-actin serves as a template for cytokeratin organization in cell free extracts. J Cell Sci 115, 1373–1382.

    CAS  PubMed  Google Scholar 

  • Whipple, R.A., Balzer, E.M., Cho, E.H., Matrone, M.A., Yoon, J.R., and Martin, S.S. (2008). Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 68, 5678–5688.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, K.H., Yoon, M., Moir, R.D., Khuon, S., Flitney, F.W., and Goldman, R.D. (2001). Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 153, 503–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, M., Moir, R.D., Prahlad, V., and Goldman, R.D. (1998). Motile properties of vimentin intermediate filament networks in living cells. J Cell Biol 143, 147–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zastrow, M.S., Vlcek, S., and Wilson, K.L. (2004). Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 117, 979–987.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Collaborative Research Grant (KLMVI-OP-201904) of CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, and the starting grant of Institut Pasteur of Shanghai (1185170000), Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Jiu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zou, Y., Li, Z. et al. Joining actions: crosstalk between intermediate filaments and actin orchestrates cellular physical dynamics and signaling. Sci. China Life Sci. 62, 1368–1374 (2019). https://doi.org/10.1007/s11427-018-9488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9488-1

Navigation