Skip to main content
Log in

Chimeric antigen receptor engineered innate immune cells in cancer immunotherapy

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Introducing chimeric antigen receptor into immune cells against malignancies has contributed to a revolutionary innovation in cancer immunotherapy. As an important type of adaptive immune cells, T cells first caught researchers’ attention and became great success in chimeric antigen receptor-based immunotherapy. However, engineered T cells seem to hit their bottleneck when resistance of cancerous cells, less encouraging responses in solid tumors and unwanted toxicities to the host remain to be solved. Meanwhile, innate immune cells get to join the race. Representatives such as natural killer cells, natural killer T cells, γδT cells and macrophages also prove to be well redirected with chimeric antigen receptors. Compared to chimeric antigen receptor engineered T cells, these engineered innate immune cells may possess multiple targeting and killing mechanisms, have the potential to crack the barrier of solid tumors and have less side effects in the host. Besides, possible universal access to cell resources and improvements in expansion and transduction techniques make these cells promising candidates with huge potential in translational medicine. Therefore, innate immune cells claim a brand-new dimension and are likely to supplement T cells greatly in the field of chimeric antigen receptor-based immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkins, R., Burgess, A., Ganguly, M., Francia, G., Kerbel, R., Wels, W.S., and Hynynen, K. (2013). Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res 73, 1892–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvey, C.M., Spinler, K.R., Irianto, J., Pfeifer, C.R., Hayes, B., Xia, Y., Cho, S., Dingal, P.C.P.D., Hsu, J., Smith, L., et al. (2017). SIRPAinhibited, marrow-derived macrophages engorge, accumulate, and differentiate in antibody-targeted regression of solid tumors. Curr Biol 27, 2065–2077.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassiri, H., Das, R., Guan, P., Barrett, D.M., Brennan, P.J., Banerjee, P.P., Wiener, S.J., Orange, J.S., Brenner, M.B., Grupp, S.A., et al. (2014). iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo. Cancer Immunol Res 2, 59–69.

    Article  CAS  PubMed  Google Scholar 

  • Bendelac, A. (1995). CD1: presenting unusual antigens to unusual T lymphocytes. Science 269, 185–186.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, P.J., Brigl, M., and Brenner, M.B. (2013). Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13, 101–117.

    Article  CAS  PubMed  Google Scholar 

  • Capsomidis, A., Benthall, G., Van Acker, H.H., Fisher, J., Kramer, A.M., Abeln, Z., Majani, Y., Gileadi, T., Wallace, R., Gustafsson, K., et al. (2018). Chimeric antigen receptor-engineered human gamma delta T cells: enhanced cytotoxicity with retention of cross presentation. Mol Ther 26, 354–365.

    Article  CAS  PubMed  Google Scholar 

  • Cardell, S., Tangri, S., Chan, S., Kronenberg, M., Benoist, C., and Mathis, D. (1995). CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182, 993–1004.

    Article  CAS  PubMed  Google Scholar 

  • Caruana, I., Savoldo, B., Hoyos, V., Weber, G., Liu, H., Kim, E.S., Ittmann, M.M., Marchetti, D., and Dotti, G. (2015). Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21, 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, K.H., Wada, M., Pinz, K.G., Liu, H., Lin, K.W., Jares, A., Firor, A. E., Shuai, X., Salman, H., Golightly, M., et al. (2017). Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 31, 2151–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Asaro, M., La Mendola, C., Di Liberto, D., Orlando, V., Todaro, M., Spina, M., Guggino, G., Meraviglia, S., Caccamo, N., Messina, A., et al. (2010). V 9V 2 T lymphocytes efficiently recognize and kill zoledronate-sensitized, imatinib-sensitive, and imatinib-resistant chronic myelogenous leukemia cells. J Immunol 184, 3260–3268.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D.M., and Maher, J. (2010). Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch Immunol Ther Exp 58, 165–178.

    Article  CAS  Google Scholar 

  • Deniger, D.C., Switzer, K., Mi, T., Maiti, S., Hurton, L., Singh, H., Huls, H., Olivares, S., Lee, D.A., Champlin, R.E., et al. (2013). Bispecific Tcells expressing polyclonal repertoire of endogenous γδ T-cell receptors and introduced CD19-specific chimeric antigen receptor. Mol Ther 21, 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, S.H., Li, Z., Chen, C., Tan, W.K., Chi, Z., Kwang, T.W., Xu, X.H., and Wang, S. (2016). Co-expansion of cytokine-induced killer cells and Vγ9Vδ2 T cells for CAR T-cell therapy. PLoS ONE 11, e0161820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esser, R., Müller, T., Stefes, D., Kloess, S., Seidel, D., Gillies, S.D., Aperlo-Iffland, C., Huston, J.S., Uherek, C., Schönfeld, K., et al. (2012). NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J Cellular Mol Med 16, 569–581.

    Article  CAS  Google Scholar 

  • Gholamin, S., Mitra, S.S., Feroze, A.H., Liu, J., Kahn, S.A., Zhang, M., Esparza, R., Richard, C., Ramaswamy, V., Remke, M., et al. (2017). Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci Transl Med 9, eaaf2968.

    Google Scholar 

  • Harrer, D.C., Dörrie, J., and Schaft, N. (2018). Chimeric antigen receptors in different cell types: new vehicles join the race. Human Gene Ther 29, 547–558.

    Article  CAS  Google Scholar 

  • Heczey, A., Liu, D., Courtney, A., Marinova E., Wei, J., Tian, G., Yvan, E., Hicks J., Dotti, G., and Metelitsa L. (2013). NKT cells as a novel platform for cancer immunotherapy with chimeric antigen receptors. J Immunol 190 (1 Supplement) 2038.

    Google Scholar 

  • Heczey, A., Liu, D., Tian, G., Courtney, A.N., Wei, J., Marinova, E., Gao, X., Guo, L., Yvon, E., Hicks, J., et al. (2014). Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamal-Hanjani, M., Quezada, S.A., Larkin, J., and Swanton, C. (2015). Translational implications of tumor heterogeneity. Clinical Cancer Res 21, 1258–1266.

    Article  CAS  Google Scholar 

  • Jiang, L., and Wang, W. (2018). Genetically modified immune cells for cancer immunotherapy. Sci China Life Sci 61, 1277–1279.

    Article  PubMed  Google Scholar 

  • Klingemann, H. (2014). Are natural killer cells superior CAR drivers? Oncoimmunology 3, e28147.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Li, W., Huang, K., Zhang, Y., Kupfer, G., and Zhao, Q. (2018a). Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 11, 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Hermanson, D.L., Moriarity, B.S., and Kaufman, D.S. (2018b). Human iPSC-derived natural killer cells engineered with chimeric antigen Receptors enhance anti-tumor activity. Cell Stem Cell 23, 181–192.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Yin, J., Li, T., Huang, S., Yan, H., Leavenworth, J.M., and Wang, X. (2015). NK cell-based cancer immunotherapy: from basic biology to clinical application. Sci China Life Sci 58, 1233–1245.

    Article  CAS  PubMed  Google Scholar 

  • Lin, C., and Zhang, J. (2018). Reformation in chimeric antigen receptor based cancer immunotherapy: Redirecting natural killer cell. BioChim Biophysica Acta (BBA)- Rev Cancer 1869, 200–215.

    Article  CAS  Google Scholar 

  • Liu, D., Tian, S., Zhang, K., Xiong, W., Lubaki, N.M., Chen, Z., and Han, W. (2017). Chimeric antigen receptor (CAR)-modified natural killer cell-based immunotherapy and immunological synapse formation in cancer and HIV. Protein Cell 8, 861–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, E., Tong, Y., Dotti, G., Shaim, H., Savoldo, B., Mukherjee, M., Orange, J., Wan, X., Lu, X., Reynolds, A., et al. (2018). Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520–531.

    Article  CAS  PubMed  Google Scholar 

  • Metelitsa, L.S., Wu, H.W., Wang, H., Yang, Y., Warsi, Z., Asgharzadeh, S., Groshen, S., Wilson, S.B., and Seeger, R.C. (2004). Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199, 1213–1221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey, M.A., Williamson, A.P., Steinbach, A.M., Roberts, E.W., Kern, N., Headley, M.B., and Vale, R.D. (2018). Chimeric antigen receptors that trigger phagocytosis. eLife 7, e36688.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, N., Michen, S., Tietze, S., Töpfer, K., Schulte, A., Lamszus, K., Schmitz, M., Schackert, G., Pastan, I., and Temme, A. (2015). Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J Immunother 38, 197–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair, S., and Dhodapkar, M.V. (2017). Natural killer T cells in cancer immunotherapy. Front Immunol 8, 1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngai, H., Tian, G., Courtney, A.N., Ravari, S.B., Guo, L., Liu, B., Jin, J., Shen, E.T., Di Pierro, E.J., and Metelitsa, L.S. (2018). IL-21 selectively protects CD62L+ NKT Cells and enhances their effector functions for adoptive immunotherapy. J Immunol 201, 2141–2153.

    Article  CAS  Google Scholar 

  • O’Neill, K., and Weber, S. (2017). Macrophage car (moto-car) in imunotherapy. US Patent, 20170166657A1.

    Google Scholar 

  • Oberschmidt, O., Kloess, S., and Koehl, U. (2017). Redirected primary human chimeric antigen receptor natural killer cells as an “off-the-shelf immunotherapy” for improvement in cancer treatment. Front Immunol 8, 654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vantourout, P., and Hayday, A. (2013). Six-of-the-best: unique contributions of γδ T cells to immunology. Nat Rev Immunol 13, 88–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillai, A.B., George, T.I., Dutt, S., Teo, P., and Strober, S. (2007). Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 178, 6242–6251.

    Article  CAS  PubMed  Google Scholar 

  • Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quail, D.F., and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salio, M., Silk, J.D., Yvonne Jones, E., and Cerundolo, V. (2014). Biology of CD1- and MR1-restricted T cells. Annu Rev Immunol 32, 323–366.

    Article  CAS  PubMed  Google Scholar 

  • Shimasaki, N., Coustan-Smith, E., Kamiya, T., and Campana, D. (2016). Expanded and armed natural killer cells for cancer treatment. Cytotherapy 18, 1422–1434.

    Article  CAS  PubMed  Google Scholar 

  • Song, L., Asgharzadeh, S., Salo, J., Engell, K., Wu, H., Sposto, R., Ara, T., Silverman, A.M., DeClerck, Y.A., Seeger, R.C., et al. (2009). Vα24- invariant NKT cells mediate antitumor activity via killing of tumorassociated macrophages. J Clin Invest 119, 1524–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straetemans, T., Kierkels, G.J.J., Doorn, R., Jansen, K., Heijhuurs, S., Dos Santos, J.M., van Muyden, A.D.D., Vie, H., Clemenceau, B., Raymakers, R., et al. (2018). GMP-grade manufacturing of T Cells engineered to express a defined γδTCR. Front Immunol 9, 1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, D., Mehal, W.Z., and Crispe, I.N. (1998). IL-18 Augments perforindependent cytotoxicity of liver NK-T Cells. J Immunol 161, 2217–2222.

    Google Scholar 

  • Terabe, M., Swann, J., Ambrosino, E., Sinha, P., Takaku, S., Hayakawa, Y., Godfrey, D.I., Ostrand-Rosenberg, S., Smyth, M.J., and Berzofsky, J.A. (2005). A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202, 1627–1633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti, D., Niu, Y., Wu, Z., Fu, X., and Han, W. (2018). Genetic engineering of T cells with chimeric antigen receptors for hematological malignancy immunotherapy. Sci China Life Sci 61, 1320–1332.

    Article  PubMed  Google Scholar 

  • Tian, G., Courtney, A.N., Jena, B., Heczey, A., Liu, D., Marinova, E., Guo, L., Xu, X., Torikai, H., Mo, Q., et al. (2016). CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clinical Investigation 126, 2341–2355.

    Article  Google Scholar 

  • Vivier, E., and Anfossi, N. (2004). Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat Rev Immunol 4, 190–198.

    Article  CAS  PubMed  Google Scholar 

  • Vivier, E., Tomasello, E., Baratin, M., Walzer, T., and Ugolini, S. (2008). Functions of natural killer cells. Nat Immunol 9, 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Wei, J., and Han, W. (2017). CART trials are going ahead. Sci China Life Sci 60, 1276–1279.

    Article  PubMed  Google Scholar 

  • Wolf, B.J., Choi, J.E., and Exley, M.A. (2018). Novel approaches to exploiting invariant NKT Cells in cancer immunotherapy. Front Immunol 9, 384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Kong, W., and Jiang, J. (2017). Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms. Sci China Life Sci 60, 601–616.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X., Xu, L., Chang, Y., Huang, X., and Zhao, X. (2018). Rapid reconstitution of NK1 cells after allogeneic transplantation is associated with a reduced incidence of graft-versus-host disease. Sci China Life Sci 61, 902–911.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, E., Gu, J., and Xu, H. (2018). Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 17, 7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81873871) and the Fundamental Research Funds for the Central Universities (BMU2018XY001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Zhang, J. Chimeric antigen receptor engineered innate immune cells in cancer immunotherapy. Sci. China Life Sci. 62, 633–639 (2019). https://doi.org/10.1007/s11427-018-9451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9451-0

Keywords

Navigation