Skip to main content
Log in

Transposable elements significantly contributed to the core promoters in the human genome

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are major components of the human genome constituting at least half of it. More than half a century ago, Barbara McClintock and later Roy Britten and Eric Davidson have postulated that they might be major players in the host gene regulation. We have scanned a large amount of data produced by ENCODE project for active transcription binding sites (TFBSs) located in TE-originated parts of polymerase II promoters. In total, more than 35,000 promoters in six different tissues were analyzed and over 26,000 of them harbored TEs. Moreover, these TEs usually provide one or more of TFBSs in the host promoters, which resulted in more than 6% of active TFBSs in these regions located in the TE-originated sequences. Rewiring of transcription circuits played a major role in mammalian evolution and consequently increased their functional and morphological diversity. In this large-scale analysis, we have demonstrated that TEs contributed a large fraction of human TFBSs. Interestingly, these TFBSs usually act in a tissue-specific manner. Thus, our study clearly showed that TEs played a significant role in shaping expression pattern in mammals and humans in particular. Furthermore, since several TE families are still active in our genome, they continue to influence not only our genome architecture but also gene functioning in a broader sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Banville, D., and Boie, Y. (1989). Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein oncomodulin in the rat. J Mol Biol 207, 481–490.

    Article  CAS  PubMed  Google Scholar 

  • Britten, R.J., and Davidson, E.H. (1969). Gene regulation for higher cells: a theory. Science 165, 349–357.

    Article  CAS  PubMed  Google Scholar 

  • Britten, R.J., and Kohne, D.E. (1968). Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science 161, 529–540.

    Article  CAS  PubMed  Google Scholar 

  • Brosius, J. (1991). Retroposons—seeds of evolution. Science 251, 753.

    Article  CAS  PubMed  Google Scholar 

  • Chuong, E.B., Rumi, M.A.K., Soares, M.J., and Baker, J.C. (2013). Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45, 325–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordaux, R., and Batzer, M.A. (2009). The impact of retrotransposons on human genome evolution. Nat Rev Genet 10, 691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning, A.P.J., Gu, W., Castoe, T.A., Batzer, M.A., and Pollock, D.D. (2011). Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7, e1002384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolittle, W.F., and Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome evolution. Nature 284, 601–603.

    Article  CAS  PubMed  Google Scholar 

  • Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feschotte, C. (2008). Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9, 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdi, H.K., Nishio, H., Tavis, J., Zielinski, R., and Dugaiczyk, A. (2000). Alu-mediated phylogenetic novelties in gene regulation and development. J Mol Biol 299, 931–939.

    Article  CAS  PubMed  Google Scholar 

  • Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 22, 1760–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey, D.A. (1982). Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101, 519–531.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, I.K., Rogozin, I.B., Glazko, G.V., and Koonin, E.V. (2003). Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genets 19, 68–72.

    Article  CAS  Google Scholar 

  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45, D353–D361.

    Article  CAS  PubMed  Google Scholar 

  • Kazazian, H.H., and Moran, J.V. (1998). The impact of L1 retrotransposons on the human genome. Nat Genet 19, 19–24.

    Article  CAS  PubMed  Google Scholar 

  • King, M.C., and Wilson, A.C. (1975). Evolution at two levels in humans and chimpanzees. Science 188, 107–116.

    Article  CAS  PubMed  Google Scholar 

  • Korenberg, J.R., and Rykowski, M.C. (1988). Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Kunarso, G., Chia, N.Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y.S., Ng, H.H., and Bourque, G. (2010). Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42, 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, V.J., Leclerc, R.D., May, G., and Wagner, G.P. (2011). Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43, 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  • Makalowski, W. (1995). SINEs as a genomic scrap yard: an essay on genomic evolution. In The Impact of Short Interspersed Elements (SINEs) on the Host Genome, R. Maraia, ed. (Austin TX: R.G. Landes), pp. 81–104.

    Google Scholar 

  • Makalowski, W. (2000). Genomic scrap yard: how genomes utilize all that junk. Gene 259, 61–67.

    Article  CAS  PubMed  Google Scholar 

  • Malamy, M.H., Fiandt, M., and Szybalski, W. (1972). Electron-microscopy of polar insertions in lac Operon of Escherichia coli. Mol Gen Genet 119, 207–222.

    Article  CAS  PubMed  Google Scholar 

  • McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA 36, 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClintock, B. (1956). Intranuclear systems controlling gene action and mutation. Brookhaven Symp Biol, 58–74.

  • Orgel, L.E., and Crick, F.H.C. (1980). Selfish DNA: the ultimate parasite. Nature 284, 604–607.

    Article  CAS  PubMed  Google Scholar 

  • Simonti, C.N., Pavlicev, M., and Capra, J.A. (2017). Transposable element exaptation into regulatory regions is rare, influenced by evolutionary age, and subject to pleiotropic constraints. Mol Biol Evol 34, 2856–2869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloan, C.A., Chan, E.T., Davidson, J.M., Malladi, V.S., Strattan, J.S., Hitz, B.C., Gabdank, I., Narayanan, A.K., Ho, M., Lee, B.T., et al. (2016). ENCODE data at the ENCODE portal. Nucleic Acids Res 44, D726–D732.

    Article  CAS  PubMed  Google Scholar 

  • Thornburg, B.G., Gotea, V., and Makalowski, W. (2006). Transposable elements as a significant source of transcription regulating signals. Gene 365, 104–110.

    Article  CAS  PubMed  Google Scholar 

  • Trizzino, M., Kapusta, A., and Brown, C.D. (2018). Transposable elements generate regulatory novelty in a tissue-specific fashion. BMC Genomics 19, 468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G. G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. (2001). The sequence of the human genome. Science 291, 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., Vasaikar, S., Shi, Z., Greer, M., and Zhang, B. (2017). WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res 45, W130–W137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waring, M., and Britten, R.J. (1966). Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 154, 791–794.

    Article  CAS  PubMed  Google Scholar 

  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., et al. (2007). A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8, 973–982.

    Article  CAS  PubMed  Google Scholar 

  • Wingender, E., Schoeps, T., Haubrock, M., Krull, M., and Dönitz, J. (2018). TFClass: expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Res 46, D343–D347.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Institute of Bioinformatics, Muenster, Germany. We acknowledge support by Open Access Publication Fund of University of Muenster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Makałowski.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellner, M., Makałowski, W. Transposable elements significantly contributed to the core promoters in the human genome. Sci. China Life Sci. 62, 489–497 (2019). https://doi.org/10.1007/s11427-018-9449-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9449-0

Keywords

Navigation