Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny

Abstract

The white crucian carp (Carassius auratus cuvieri, WCC) not only is one of the most economically important fish in Asia, characterized by strong reproductive ability and rapid growth rates, but also represents a good germplasm to produce hybrid progenies with heterosis. Gene knockout technique provides a safe and acceptant way for fish breeding. Achieving gene knockout in WCC and its hybrid progeny will be of great importance for both genetic studies and hybridization breeding. Tyrosinase (TYR) is a key enzyme in melanin synthesis. Depletion of tyr in zebrafish and mice results in mosaic pigmentation or total albinism. Here, we successfully used CRISPR-Cas9 to target tyr in WCC and its hybrid progeny (WR) derived from the cross of WCC (♀) and red crucian carp (Carassius auratus red var., RCC, ♂). The level of TYR protein was significantly reduced in mutant WCC. Both the mutant WCC and the mutant WR showed different degrees of melanin reduction compared with the wild-type sibling control fish, resulting from different mutation efficiency ranging from 60% to 90%. In addition, the transcriptional expression profiles of a series of pivotal pigment synthesis genes, i.e. tyrp1, mitfa, mitfb, dct and sox10, were down-regulated in tyr-CRISPR WCC, which ultimately caused a reduction in melanin synthesis. These results demonstrated that tyr plays a key role in melanin synthesis in WCC and WR, and CRISPR-Cas9 is an effective tool for modifying the genome of economical fish. Furthermore, the tyr-CRISPR models could be valuable in understanding fundamental mechanisms of pigment formation in non-model fish.

This is a preview of subscription content, log in to check access.

References

  1. Altschmied, J., Delfgaauw, J., Wilde, B., Duschl, J., Bouneau, L., Volff, J. N., Schartl, M. (2002). Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish. Genetics 161, 259–267.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Aspengren, S., Sköld, H.N., and Wallin, M. (2009). Different strategies for color change. Cell Mol Life Sci 66, 187–191.

    Article  CAS  PubMed  Google Scholar 

  3. Bartley, D.M., Rana, K., and Immink, A.J. (2000). The use of inter-specific hybrids in aquaculture and fisheries reviews in fish. Rev Fish Biol Fisheries 10, 325–337.

    Article  Google Scholar 

  4. Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., and Marraffini, L.A. (2013). Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41, 7429–7437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braasch, I., Liedtke, D., Volff, J.N., and Schartl, M. (2009). Pigmentary function and evolution of tyrp1 gene duplicates in fish. Pigm Cell Melanoma Res 22, 839–850.

    Article  CAS  Google Scholar 

  6. Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J.W., and Xi, J.J. (2013). Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res 23, 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chakrapani, V., Patra, S.K., Panda, R.P., Rasal, K.D., Jayasankar, P., and Barman, H.K. (2016). Establishing targeted carp TLR22 gene disruption via homologous recombination using CRISPR/Cas9. Dev Comp Immunol 61, 242–247.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, J., Cui, X., Jia, S., Luo, D., Cao, M., Zhang, Y., Hu, H., Huang, K., Zhu, Z., and Hu, W. (2016). Disruption of dmc1 produces abnormal sperm in medaka (Oryzias latipes). Sci Rep 6, 30912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, J., Wang, W., Tian, Z., Dong, Y., Dong, T., Zhu, H., Zhu, Z., Hu, H., and Hu, W. (2018). Efficient gene transfer and gene editing in sterlet (acipenser ruthenus). Front Genet 9, 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, Z.J. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58, 377–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui, Z., Liu, Y., Wang, W., Wang, Q., Zhang, N., Lin, F., Wang, N., Shao, C., Dong, Z., Li, Y., et al. (2017). Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (Cynoglossus semilaevis). Sci Rep 7, 42213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng, K., Luo, H., Li, Y., Chen, J., Wang, Y., Sun, Y., Zhu, Z., and Hu, W. (2017). High efficient gene targeting in rice field eel Monopterus albus by transcription activator-like effector nucleases. Sci Bull 62, 162–164.

    Article  CAS  Google Scholar 

  14. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.L., Wei, P., Cao, F., Zhu, S., Zhang, F., Mao, Y., et al. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23, 1229–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, X., Liu, S., and Liu, Y. (2006). Evidence for recombination of mitochondrial DNA in triploid crucian carp. Genetics 172, 1745–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hall, T, A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series, 95–98.

    Google Scholar 

  17. Hubbard, J.K., Uy, J.A.C., Hauber, M.E., Hoekstra, H.E., and Safran, R.J. (2010). Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genets 26, 231–239.

    Article  CAS  Google Scholar 

  18. Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., Peterson, R.T., Yeh, J.R.J., and Joung, J.K. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31, 227–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jao, L.E., Wente, S.R., and Chen, W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci USA 110, 13904–13909.

    Article  PubMed  Google Scholar 

  20. Kelsh, R.N. (2004). Genetics and evolution of pigment patterns in fish. Pigment Cell Res 17, 326–336.

    Article  CAS  Google Scholar 

  21. Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., et al. (2013). Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, M., Yang, H., Zhao, J., Fang, L., Shi, H., Li, M., Sun, Y., Zhang, X., Jiang, D., Zhou, L., et al. (2014). Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197, 591–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, S., Wang, C., Yu, W., Zhao, S., and Gong, Y. (2012). Identification of genes related to white and black plumage formation by RNA-Seq from white and black feather bulbs in ducks. PLoS ONE 7, e36592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, Q., Qi, Y., Liang, Q., Xu, X., Hu, F., Wang, J., Xiao, J., Wang, S., Li, W., Tao, M., et al. (2018). The chimeric genes in the hybrid lineage of Carassius auratus cuvieri (♀)×Carassius auratus red var. (♂). Sci China Life Sci 61, 1079–1089.

    Article  PubMed  Google Scholar 

  25. Liu, S., Qin, Q., Xiao, J., Lu, W., Shen, J., Li, W., Liu, J., Duan, W., Zhang, C., Tao, M., et al. (2007). The formation of the polyploid hybrids from different subfamily fish crossings and its evolutionary significance. Genetics 176, 1023–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, Z., Liu, S., Yao, J., Bao, L., Zhang, J., Li, Y., Jiang, C., Sun, L., Wang, R., Zhang, Y., et al. (2016). The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7, 11757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luo, K.K., Xiao, J., Liu, S.J., Wang, J., He, W.G., Hu, J., Qin, Q.B., Zhang, C., Tao, M., and Liu, Y. (2011). Massive production of all-female diploids and triploids in the crucian carp. Int J Biol Sci 7, 487–495.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma, M., Ye, A.Y., Zheng, W., and Kong, L. (2013). A guide RNA sequence design platform for the CRISPR/Cas9 system for model organism genomes. Biomed Res Int 5, 1–4.

    Google Scholar 

  29. Men, K., Duan, X., He, Z., Yang, Y., Yao, S., and Wei, Y. (2017). CRISPR/Cas9-mediated correction of human genetic disease. Sci China Life Sci 60, 447–457.

    Article  CAS  PubMed  Google Scholar 

  30. Nishimura, E.K., Jordan, S.A., Oshima, H., Yoshida, H., Osawa, M., Moriyama, M., Jackson, I.J., Barrandon, Y., Miyachi, Y., and Nishikawa, S.I. (2002). Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416, 854–860.

    Article  CAS  PubMed  Google Scholar 

  31. Oetting, W.S., and King, R.A. (1999). Molecular basis of albinism: mutations and polymorphisms of pigmentation genes associated with albinism. Hum Mutat 13, 99–115.

    Article  CAS  PubMed  Google Scholar 

  32. Protas, M.E., and Patel, N.H. (2008). Evolution of coloration patterns. Annu Rev Cell Dev Biol 24, 425–446.

    Article  CAS  PubMed  Google Scholar 

  33. Ren, L., Li, W., Tao, M., Qin, Q., Luo, J., Chai, J., Tang, C., Xiao, J., Tang, X., Lin, G., et al. (2016). Homoeologue expression insights into the basis of growth heterosis at the intersection of ploidy and hybridity in Cyprinidae. Sci Rep 6, 27040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen, B., Zhang, J., Wu, H., Wang, J., Ma, K., Li, Z., Zhang, X., Zhang, P., and Huang, X. (2013). Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23, 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, J., Xiao, J., Zeng, M., Xu, K., Tao, M., Zhang, C., Duan, W., Liu, W. B., Luo, K.K., Liu, Y., et al. (2015). Genomic variation in the hybrids of white crucian carp and red crucian carp: evidence from ribosomal DNA. Sci China Life Sci 58, 590–601.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, K., Duan, W., Xiao, J., Tao, M., Zhang, C., Liu, Y., and Liu, S.J. (2015). Development and application of biological technologies in fish genetic breeding. Sci China Life Sci 58, 187–201.

    Article  CAS  PubMed  Google Scholar 

  38. Yano, A., Nicol, B., Jouanno, E., and Guiguen, Y. (2014). Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex-determining gene using zinc-finger nucleases. Mar Biotechnol 16, 243–250.

    Article  CAS  PubMed  Google Scholar 

  39. Yang, H., Wang, H., Shivalila, C.S., Cheng, A.W., Shi, L., and Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154, 1370–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, F., Xiao, J., Liang, X.Y., Liu, S.J., Zhou, G.J., Luo, K.K., Liu, Y., Hu, W., Wang, Y.P., and Zhu, Z.Y. (2011). Rapid growth and sterility of growth hormone gene transgenic triploid carp. Chin Sci Bull 56, 1679–1684.

    Article  Google Scholar 

  41. Zhang, X., Liang, P., Ding, C., Zhang, Z., Zhou, J., Xie, X., Huang, R., Sun, Y., Sun, H., Zhang, J., et al. (2016). Efficient production of genemodified mice using staphylococcus aureus Cas9. Sci Rep 6, 32565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Z.H., Chen, J., Li, L., Tao, M., Zhang, C., Qin, Q.B., Xiao, J., Liu, Y., and Liu, S.J. (2014). Research advances in animal distant hybridization. Sci China Life Sci 57, 889–902.

    Article  CAS  PubMed  Google Scholar 

  43. Zhen, S., Hua, L., Takahashi, Y., Narita, S., Liu, Y.H., and Li, Y. (2014). In vitro and in vivo growth suppression of human papillomavirus 16- positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun 450, 1422–1426.

    Article  CAS  PubMed  Google Scholar 

  44. Zhong, Z., Niu, P., Wang, M., Huang, G., Xu, S., Sun, Y., Xu, X., Hou, Y., Sun, X., Yan, Y., et al. (2016). Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6, 22953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, W., Wang, L., Dong, Z., Chen, X., Song, F., Liu, N., Yang, H., and Fu, J. (2016). Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Sci Rep 6, 31347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31430088, 31730098), the earmarked fund for China Agriculture Research System (CARS-45), the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province (20134486), the Natural Science Foundation of Hunan Province (14JJ2062), and the Research Foundation of Education Bureau of Hunan Province, China (16B160).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaojun Liu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Qi, Y., Liang, Q. et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 62, 1194–1202 (2019). https://doi.org/10.1007/s11427-018-9404-7

Download citation

Keywords

  • white crucian carp
  • hybridization
  • CRISPR-Cas9
  • tyrosinase
  • pigmentation