Skip to main content
Log in

Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Remarkable progress in correlative light and electron cryo-microscopy (cryo-CLEM) has been made in the past decade. A crucial component for cryo-CLEM is a dedicated cryo-fluorescence microscope (cryo-FM). Here, we describe an ultra-stable super-resolution cryo-FM that exhibits excellent thermal and mechanical stability. The temperature fluctuations in 10 h are less than 0.06 K, and the mechanical drift over 5 h is less than 200 nm in three dimensions. We have demonstrated the super-resolution imaging capability of this system (average single molecule localization accuracy of ∼13.0 nm). The results suggest that our system is particularly suitable for long-term observations, such as single molecule localization microscopy (SMLM) and cryogenic super-resolution correlative light and electron microscopy (csCLEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellare, J.R., Davis, H.T., Scriven, L.E., and Talmon, Y. (1988). Controlled environment vitrification system: an improved sample preparation technique. J Elec Microsc Tech 10, 87–111.

    Article  CAS  Google Scholar 

  • Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., and Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645.

    Article  PubMed  Google Scholar 

  • Bleck, C.K.E., Merz, A., Gutierrez, M.G., Walther, P., Dubochet, J., Zuber, B., and Griffiths, G. (2010). Comparison of different methods for thin section EM analysis of Mycobacterium smegmatis. J Microscopy 237, 23–38.

    Article  CAS  Google Scholar 

  • Briegel, A., Chen, S., Koster, A.J., Plitzko, J.M., Schwartz, C.L., and Jensen, G.J. (2010). Correlated light and electron cryo-microscopy. Methods Enzymol 481, 317–341.

    Article  PubMed  Google Scholar 

  • Chang, H., Zhang, M., Ji, W., Chen, J., Zhang, Y., Liu, B., Lu, J., Zhang, J., Xu, P., and Xu, T. (2012). A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109, 4455–4460.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, Y.W., Chen, S., Tocheva, E.I., Treuner-Lange, A., Löbach, S., Søgaard-Andersen, L., and Jensen, G.J. (2014). Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11, 737–739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Boer, P., Hoogenboom, J.P., and Giepmans, B.N. (2015). Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12, 503–513.

    Article  PubMed  CAS  Google Scholar 

  • Dubochet, J. (2012). Cryo-EM-the first thirty years. J Microscopy 245, 221–224.

    Article  CAS  Google Scholar 

  • Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quart Rev Biophys 21, 129–228.

    Article  CAS  Google Scholar 

  • Glaeser, R.M. (2016). How good can cryo-EM become? Nat Methods 13, 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Hess, S.T., Girirajan, T.P.K., and Mason, M.D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91, 4258–4272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirschfeld, V., and Hubner, C.G. (2010). A sensitive and versatile laser scanning confocal optical microscope for single-molecule fluorescence at 77 K. Rev Sci Instrum 81, 113705.

    Article  PubMed  CAS  Google Scholar 

  • Huang, B., Wang, W., Bates, M., and Zhuang, X. (2008). Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurbain, I., and Sachse, M. (2011). The future is cold: cryo-preparation methods for transmission electron microscopy of cells. Biol Cell 103, 405–420.

    Article  PubMed  Google Scholar 

  • Hussels, M., Konrad, A., and Brecht, M. (2012). Confocal sample-scanning microscope for single-molecule spectroscopy and microscopy with fast sample exchange at cryogenic temperatures. Rev Sci Instrum 83, 123–706.

    Article  CAS  Google Scholar 

  • Kaufmann, R., Hagen, C., and Grünewald, K. (2014). Fluorescence cryomicroscopy: current challenges and prospects. Curr Opin Chem Biol 20, 86–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaufmann, R., Schellenberger, P., Seiradake, E., Dobbie, I.M., Jones, E.Y., Davis, I., Hagen, C., and Grünewald, K. (2014). Super-resolution microscopy using standard fluorescent proteins in intact cells under cryoconditions. Nano Lett 14, 4171–4175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozankiewicz, B., and Orrit, M. (2014). Single-molecule photophysics, from cryogenic to ambient conditions. Chem Soc Rev 43, 1029–1043.

    Article  PubMed  CAS  Google Scholar 

  • Le Gros, M.A., McDermott, G., Uchida, M., Knoechel, C.G., and Larabell, C.A. (2009). High-aperture cryogenic light microscopy. J Microscopy 235, 1–8.

    Article  Google Scholar 

  • Li, W., Stein, S.C., Gregor, I., and Enderlein, J. (2015). Ultra-stable and versatile widefield cryo-fluorescence microscope for single-molecule localization with sub-nanometer accuracy. Opt Express 23, 3770–3783.

    Article  PubMed  CAS  Google Scholar 

  • Liu, B., Xue, Y., Zhao, W., Chen, Y., Fan, C., Gu, L., Zhang, Y., Zhang, X., Sun, L., Huang, X., et al. (2015). Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 5, 13017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McDonald, K.L. (2009). A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J Microscopy 235, 273–281.

    Article  CAS  Google Scholar 

  • Müller-Reichert, T., and Verkade, P. (2014). Preface. Correlative light and electron microscopy II. Methods Cell Biol 124, xvii–xviii.

    Article  PubMed  Google Scholar 

  • Peddie, C.J., Blight, K., Wilson, E., Melia, C., Marrison, J., Carzaniga, R., Domart, M.C., O’Toole, P., Larijani, B., and Collinson, L.M. (2014). Correlative and integrated light and electron microscopy of in-resin GFP fluorescence, used to localise diacylglycerol in mammalian cells. Ultramicroscopy 143, 3–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perkovic, M., Kunz, M., Endesfelder, U., Bunse, S., Wigge, C., Yu, Z., Hodirnau, V.V., Scheffer, M.P., Seybert, A., Malkusch, S., et al. (2014). Correlative light-and electron microscopy with chemical tags. J Struct Biol 186, 205–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez, J.A., Ivanova, M.I., Sawaya, M.R., Cascio, D., Reyes, F.E., Shi, D., Sangwan, S., Guenther, E.L., Johnson, L.M., Zhang, M., et al. (2015). Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rust, M.J., Bates, M., and Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Meth 3, 793–796.

    Article  CAS  Google Scholar 

  • Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W., and Plitzko, J.M. (2007). Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135–145.

    Article  PubMed  Google Scholar 

  • Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R., and Nicastro, D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227, 98–109.

    Article  PubMed  Google Scholar 

  • Wang, S., Li, S., Ji, G., Huang, X., and Sun, F. (2017). Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys Rep 3, 8–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinhausen, B., Saldanha, O., Wilke, R.N., Dammann, C., Priebe, M., Burghammer, M., Sprung, M., and Koster, S. (2014). Scanning X-ray nanodiffraction on living eukaryotic cells in microfluidic environments. Phys Rev Lett 112, 202–209.

    Article  CAS  Google Scholar 

  • Weisenburger, S., Jing, B., Renn, A., and Sandoghdar, V. (2013). Cryogenic localization of single molecules with angstrom precision. Nanoimag Nanospectrosc 8815, 27.

    Google Scholar 

  • Wolff, G., Hagen, C., Grünewald, K., and Kaufmann, R. (2016). Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 108, 245–258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y.D., Gu, L.S., Chang, H., Ji, W., Chen, Y., Zhang, M.S., Yang, L., Liu, B., Chen, L.Y., and Xu, T. (2013). Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4, 598–606.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zondervan, R., Kulzer, F., Kol’chenk, M.A., and Orrit, M. (2004). Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels. J Phys Chem A 108, 1657–1665.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0500203, 2016YFA0502400, 2017YFA0504700, 2017YFA0505300), the National Natural Science Foundation of China (31661143041, 31127901) and Joint Program between Chinese Academy of Sciences and Peking University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji or Tao Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xue, Y., Tian, B. et al. Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. Sci. China Life Sci. 61, 1312–1319 (2018). https://doi.org/10.1007/s11427-018-9380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9380-3

Keywords

Navigation