Skip to main content
Log in

Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

An understanding of the nutrient utilization characteristics of pigs with different feed efficiencies (FEs) will help us to develop new strategies to reduce the costs of pig production. In this study, we selected pigs with a range of FEs according to two feed conversion ratio models: the feed intake (FI) model, where pigs had the same average daily gains (ADGs) but different FIs, and the ADG model, where pigs had the same FIs but different ADGs. High-FE pigs had a higher abundance of short chain fatty acid (SCFA)-producing bacteria (Lachnospiraceae, Clostridiaceae_1, and Coriobacteriaceae) in their caecum in the FI model, and low-FE pigs had a higher abundance of two families (Bacteroidales_S24_7_group and Peptococcaceae) and two genera (Anaerotruncus and Candidatus_Soleaferrea) in both models. By contrast, high-FE pigs had more goblet cells and higher mRNA expression of insulin-like growth factor 1 (IGF-1) in the FI model, and higher mRNA expression of occludin but lower expressions of adenosine monophosphate-activated protein kinase (AMPK)-α2 and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) in the ADG model. These findings suggest that the presence of SCFA-producing bacteria in the caecum and increased muscular growth may contribute to the high FE of low-FI pigs, while improved intestinal functions and decreased mitochondrial activity in the skeletal muscle are related to the high FE of high-ADG pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bäckhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., and Gordon, J.I. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.

    Article  CAS  Google Scholar 

  • Baker, J., Liu, J.P., Robertson, E.J., and Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Barea, R., Dubois, S., Gilbert, H., Sellier, P., van Milgen, J., and Noblet, J. (2010). Energy utilization in pigs selected for high and low residual feed intake. J Anim Sci 88, 2062–2072.

    Article  CAS  PubMed  Google Scholar 

  • Barnard, C.S. (2008). Economic analysis and livestock feeding. J Agric Economics 20, 323–330.

    Article  Google Scholar 

  • Bindels, L.B., Neyrinck, A.M., Claus, S.P., Le Roy, C.I., Grangette, C., Pot, B., Martinez, I., Walter, J., Cani, P.D., and Delzenne, N.M. (2016). Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10, 1456–1470.

    Article  CAS  PubMed  Google Scholar 

  • Boddicker, N., Gabler, N.K., Spurlock, M.E., Nettleton, D., and Dekkers, J. C.M. (2011). Effects of ad libitum and restricted feeding on early production performance and body composition of Yorkshire pigs selected for reduced residual feed intake. Animal 5, 1344–1353.

    Article  CAS  PubMed  Google Scholar 

  • Bunker, J.J., Flynn, T.M., Koval, J.C., Shaw, D.G., Meisel, M., McDonald, B.D., Ishizuka, I.E., Dent, A.L., Wilson, P.C., Jabri, B., et al. (2015). Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, W., Casey, D.S., and Dekkers, J.C.M. (2008). Selection response and genetic parameters for residual feed intake in Yorkshire swine1. J Anim Sci 86, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Davila, A.M., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P.H., Sanz, Y., and Tomé, D. (2013). Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68, 95–107.

    Article  CAS  Google Scholar 

  • Dou, S., Gadonna-Widehem, P., Rome, V., Hamoudi, D., Rhazi, L., Lakhal, L., Larcher, T., Bahi-Jaber, N., Pinon-Quintana, A., Guyonvarch, A., et al. (2017). Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS ONE 12, e0169851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure, J., Lefaucheur, L., Bonhomme, N., Ecolan, P., Meteau, K., Coustard, S.M., Kouba, M., Gilbert, H., and Lebret, B. (2013). Consequences of divergent selection for residual feed intake in pigs on muscle energy metabolism and meat quality. Meat Sci 93, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Halder, C.V., Faria, A.V.S., and Andrade, S.S. (2017). Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice Res Clin Gastroenterol 31, 643–648.

    Article  CAS  Google Scholar 

  • Gardner, S., Alzhanov, D., Knollman, P., Kuninger, D., and Rotwein, P. (2011). TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Mol Endocrinol 25, 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, H., Bidanel, J.P., Gruand, J., Caritez, J.C., Billon, Y., Guillouet, P., Lagant, H., Noblet, J., and Sellier, P. (2007). Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci 85, 3182–3188.

    Article  CAS  PubMed  Google Scholar 

  • Godinho, R.M., Bergsma, R., Silva, F.F., Sevillano, C.A., Knol, E.F., Lopes, M.S., Lopes, P.S., Bastiaansen, J.W.M., and Guimarães, S.E.F. (2018). Genetic correlations between feed efficiency traits, and growth performance and carcass traits in purebred and crossbred pigs. J Anim Sci 96, 817–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grela, E.R., Czech, A., Kusior, G., Szczotka-Bochniarz, A., and Klebaniuk, R. (2018). The effect of feeding system and sex on the performance and selected gastrointestinal features of fattening pig. Pol J Vet Sci 21, 157–165.

    CAS  PubMed  Google Scholar 

  • Grubbs, J.K., Fritchen, A.N., Huff-Lonergan, E., Dekkers, J.C.M., Gabler, N.K., and Lonergan, S.M. (2013). Divergent genetic selection for residual feed intake impacts mitochondria reactive oxygen species production in pigs. J Anim Sci 91, 2133–2140.

    Article  CAS  PubMed  Google Scholar 

  • Han, G.G., Lee, J.Y., Jin, G.D., Park, J., Choi, Y.H., Chae, B.J., Kim, E.B., and Choi, Y.J. (2017). Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl Microbiol Biotechnol 101, 5903–5911.

    Article  CAS  PubMed  Google Scholar 

  • Harris, A.J., Patience, J.F., Lonergan, S.M., J.M. Dekkers, C., and Gabler, N.K. (2015). Improved nutrient digestibility and retention partially explains feed efficiency gains in pigs selected for low residual feed intake1. J Anim Sci 90, 164–166.

    Article  Google Scholar 

  • He, M., Fang, S., Huang, X., Zhao, Y., Ke, S., Yang, H., Li, Z., Gao, J., Chen, C., and Huang, L. (2016). Evaluating the contribution of gut microbiota to the variation of porcine fatness with the caecum and fecal samples. Front Microbiol 7, 2108.

    PubMed  PubMed Central  Google Scholar 

  • Houlden, A., Goldrick, M., Brough, D., Vizi, E.S., Lénárt, N., Martinecz, B., Roberts, I.S., and Denes, A. (2016). Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57, 10–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jing, L., Hou, Y., Wu, H., Miao, Y., Li, X., Cao, J., Michael Brameld, J., Parr, T., and Zhao, S. (2015). Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Sci Rep 5, 11953.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kachooei, S.A., Ranjbar, M.M., and Kachooei, S.A. (2017). Evaluation of Pasteurella multocida serotype B:2 resistance to immune serum and complement system. Vet Res Forum 8, 179–184.

    Google Scholar 

  • Kim, H.B., and Isaacson, R.E. (2015). The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Veterin Microbiol 177, 242–251.

    Article  CAS  Google Scholar 

  • LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D., and Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotech 24, 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1a. Cell 127, 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  • Lau, S.K.P., Woo, P.C.Y., Woo, G.K.S., Fung, A.M.Y., Ngan, A.H.Y., Song, Y., Liu, C., Summanen, P., Finegold, S.M., and Yuen, K. (2006). Bacteraemia caused by Anaerotruncus colihominis and emended description of the species. J Clin Pathol 59, 748–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehman, J.J., Barger, P.M., Kovacs, A., Saffitz, J.E., Medeiros, D.M., and Kelly, D.P. (2000). Peroxisome proliferator-activated receptor γ coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106, 847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Naou, T., Le Floc'h, N., Louveau, I., Gilbert, H., and Gondret, F. (2012). Metabolic changes and tissue responses to selection on residual feed intake in growing pigs. J Anim Sci 90, 4771–4780.

    Article  PubMed  Google Scholar 

  • Ley, R.E., Bäckhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. (2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102, 11070–11075.

    Article  CAS  Google Scholar 

  • Li, M.M., Seelenbinder, K.M., Ponder, M.A., Deng, L., Rhoads, R.P., Pelzer, K.D., Radcliffe, J.S., Maxwell, C.V., Ogejo, J.A., White, R.R., et al. (2017). Effects of dirty housing and a typhimurium DT104 challenge on pig growth performance, diet utilization efficiency, and gas emissions from stored manure. J Anim Sci 95, 1264–1276.

    CAS  PubMed  Google Scholar 

  • Looft, T., Bayles, D.O., Alt, D.P., and Stanton, T.B. (2015). Complete genome sequence of Coriobacteriaceae strain 68-1-3, a novel mucusdegrading isolate from the swine intestinal tract. Genome Announc 3, e01143–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv, D., Xiong, X., Yang, H., Wang, M., He, Y., Liu, Y., and Yin, Y. (2018). Effect of dietary soy oil, glucose, and glutamine on growth performance, amino acid profile, blood profile, immunity, and antioxidant capacity in weaned piglets. Sci China Life Sci, in press doi: 10.1007/s11427-018-9301-y.

    Google Scholar 

  • Ma, M., and Mu, T. (2016). Anti-diabetic effects of soluble and insoluble dietary fibre from deoiled cumin in low-dose streptozotocin and high glucose-fat diet-induced type 2 diabetic rats. J Funct Foods 25, 186–196.

    Article  CAS  Google Scholar 

  • McCormack, U.M., Curião, T., Buzoianu, S.G., Prieto, M.L., Ryan, T., Varley, P., Crispie, F., Magowan, E., Metzler-Zebeli, B.U., Berry, D., et al. (2017). Exploring a possible link between the intestinal microbiota and feed efficiency in pigs. Appl Environ Microbiol 83, e00380–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messori, S., Trevisi, P., Simongiovanni, A., Priori, D., and Bosi, P. (2013). Effect of susceptibility to enterotoxigenic Escherichia coli F4 and of dietary tryptophan on gut microbiota diversity observed in healthy young pigs. Veterin Microbiol 162, 173–179.

    Article  CAS  Google Scholar 

  • Mörkl, S., Lackner, S., Müller, W., Gorkiewicz, G., Kashofer, K., Oberascher, A., Painold, A., Holl, A., Holzer, P., Meinitzer, A., et al. (2017). Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int J Eat Disord 50, 1421–1431.

    Article  PubMed  Google Scholar 

  • Myer, P.R., Wells, J.E., Smith, T.P.L., Kuehn, L.A., and Freetly, H.C. (2015a). Cecum microbial communities from steers differing in feed efficiency. J Anim Sci 93, 5327–5340.

    Article  CAS  PubMed  Google Scholar 

  • Myer, P.R., Wells, J.E., Smith, T.P.L., Kuehn, L.A., and Freetly, H.C. (2015b). Microbial community profiles of the colon from steers differing in feed efficiency. Springerplus 4, 454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, N.H., McPhee, C.P., and Wade, C.M. (2005). Responses in residual feed intake in lines of Large White pigs selected for growth rate on restricted feeding (measured on ad libitum individual feeding). J Anim Breed Genet 122, 264–270.

    Article  CAS  PubMed  Google Scholar 

  • Oshima, T., and Miwa, H. (2016). Gastrointestinal mucosal barrier function and diseases. J Gastroenterol 51, 768–778.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, R., Ingerslev, H.C., Sturek, M., Alloosh, M., Cirera, S., Christoffersen, B.Ø., Moesgaard, S.G., Larsen, N., and Boye, M. (2013). Characterisation of gut microbiota in ossabaw and göttingen minipigs as models of obesity and metabolic syndrome. PLoS ONE 8, e56612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quan, J., Cai, G., Ye, J., Yang, M., Ding, R., Wang, X., Zheng, E., Fu, D., Li, S., Zhou, S., et al. (2018). A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios. Sci Rep 8, 4536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, P., Yang, X.J., Cui, S.Q., Kim, J.S., Menon, D., and Baidoo, S.K. (2017). Effects of different feeding levels during three short periods of gestation on gilt and litter performance, nutrient digestibility, and energy homeostasis in gilts. J Anim Sci 95, 1232–1242.

    CAS  PubMed  Google Scholar 

  • Sicard, J.F., Le Bihan, G., Vogeleer, P., Jacques, M., and Harel, J. (2017). Interactions of intestinal bacteria with components of the intestinal mucus. Front Cell Infect Microbiol 7, 387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, Z., Yang, T., Wang, Y., Xing, K., Zhang, F., Zhao, X., Ao, H., Chen, S., Liu, J., and Wang, C. (2017). Metagenomic analysis of cecal microbiome identified microbiota and functional capacities associated with feed efficiency in landrace finishing pigs. Front Microbiol 8, 1546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Article  PubMed  Google Scholar 

  • Unno, T., Kim, J.M., Guevarra, R.B., and Nguyen, S.G. (2015). Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota. J Microbiol Biotech 25, 431–438.

    Article  CAS  Google Scholar 

  • Vincent, A., Louveau, I., Gondret, F., Tréfeu, C., Gilbert, H., and Lefaucheur, L. (2015). Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle12. J Anim Sci 93, 2745–2758.

    Article  CAS  PubMed  Google Scholar 

  • Vigors, S., O’Doherty, J.V., Kelly, A.K., O’Shea, C.J., and Sweeney, T. (2016). The effect of divergence in feed efficiency on the intestinal microbiota and the intestinal immune response in both unchallenged and lipopolysaccharide challenged ileal and colonic explants. PLoS ONE 11, e0148145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Li, Z., Gao, L., Qi, Y., Zhu, H., and Qin, X. (2018). The regulation effect of AMPK in immune related diseases. Sci China Life Sci 61, 523–533.

    Article  PubMed  Google Scholar 

  • Yang, H., Huang, X., Fang, S., He, M., Zhao, Y., Wu, Z., Yang, M., Zhang, Z., Chen, C., and Huang, L. (2017). Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol 8, 1555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, Y.L., Baidoo, S.K., Schulze, H., and Simmins, P.H. (2001). Effects of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of the gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Product Sci 71, 97–107.

    Article  Google Scholar 

  • Yu, D.Y., Kim, S.H., Kim, J.A., Kim, I.S., Moon, Y.S., Lee, S.S., Park, H. C., Jung, J.H., Chung, Y.H., Shin, D.K., et al. (2018). Effects of Rubus coreanus byproducts on intestinal microbiota and the immune modulation. Asian Australas J Anim Sci 31, 429–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Wu, W., Lee, Y.K., Xie, J., and Zhang, H. (2018). Spatial heterogeneity and co-occurrence of mucosal and luminal microbiome across swine intestinal tract. Front Microbiol 9, 48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Ji, H., Liu, H., Wang, S., Wang, J., and Wang, Y. (2016). Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl Microbiol Biotechnol 100, 10081–10093.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Xiao, X.H., Zhang, Q., Mao, L.L., Yu, M., Xu, J.P., and Wang, T. (2017). Correlation of placental microbiota with fetal macrosomia and clinical characteristics in mothers and newborns. Oncotarget 8, 82314–82325.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Wang, Y., Liu, S., Huang, J., Zhai, Z., He, C., Ding, J., Wang, J., Wang, H., Fan, W., et al. (2015). The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10, e0117441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, L., Zhang, Q., Ma, W., Tian, F., Shen, H., and Zhou, M. (2017). A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 8, 4644–4656.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31630074), the Beijing Municipal Natural Science Foundation (S170001), the National Key Research and Development Program of China (2016YFD0500506), the 111 Project (B16044) and Jinxinnong Animal Science Developmental Foundation and Hunan Co-Innovation Center of Animal Production Safety, CICAPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B., Li, T., Wang, W. et al. Metabolic characteristics and nutrient utilization in high-feed-efficiency pigs selected using different feed conversion ratio models. Sci. China Life Sci. 62, 959–970 (2019). https://doi.org/10.1007/s11427-018-9372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9372-6

Keywords

Navigation