Structure for energy cycle: a unique status of the second law of thermodynamics for living systems

Abstract

Distinguishing things from beings, or matters from lives, is a fundamental question. Extending E. Schrödinger’s neg-entropy and I. Prigogine’s dissipative structure, we propose a chemical kinetic view that the earliest “live” process is embedded essentially in a special interaction between a pair of specific components under a particular, corresponding environmental conditions. The interaction exists as an inter-molecular-force-bond complex (IMFBC) that couples two separate chemical processes: one is the spontaneous formation of the IMFBC driven by a decrease of Gibbs free energy as a dissipative process; while the other is the disassembly of the IMFBC driven thermodynamically by free energy input from the environment. The two chemical processes coupled by the IMFBC originated independently and were considered non-living on Earth, but the IMFBC coupling of the two can be considered as the earliest form of metabolism: the first landmark on the path from things to a being. The dynamic formation and disassembly of the IMFBC, as a composite individual, follows a principle designated as “… structure for energy for structure for energy…”, the cycle continues; and for short it will be referred to as “structure for energy cycle”. With additional features derived from this starting point, the IMFBC-centered “live” process spontaneously evolved into more complex living organisms with the characteristics currently known.

This is a preview of subscription content, access via your institution.

References

  1. Anderson, P.W. (1972). More is different: broken symmetry and nature of hierarchical structure of science. Science 177, 393–396.

    Article  PubMed  CAS  Google Scholar 

  2. Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.

    Article  PubMed  CAS  Google Scholar 

  3. Blum, H.F. (1951). Time’s Arrow and Evolution. (Princeton: Princeton University Press).

    Google Scholar 

  4. Chan, H.S. (1995). Kinetics of protein folding. Nature 373, 664–665.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, S.N., and Chang, A.C.Y. (1973). Recircularization and autonomous replication of a sheared R-factor DNA segment in Escherichia coli transformants. Proc Natl Acad Sci USA 70, 1293–1297.

    Article  PubMed  CAS  Google Scholar 

  6. Copley, S.D. (2015). An evolutionary biochemist’s perspective on promiscuity. Trends Biochem Sci 40, 72–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Copley, S.D., Smith, E., and Morowitz, H.J. (2005). A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci USA 102, 4442–4447.

    Article  PubMed  CAS  Google Scholar 

  8. Crick, F. (1958). On protein synthesis. Symposia Society Exp Biol 12, 138–163.

    CAS  Google Scholar 

  9. Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561–563.

    Article  PubMed  CAS  Google Scholar 

  10. Crick, F. (1981). Life Itself: Its Origin and Nature. (New York: Simon & Schuster).

    Google Scholar 

  11. Drygin, Y. (1998). Natural covalent complexes of nucleic acids and proteins: some comments on practice and theoryon the path from wellknown complexes to new ones. Nucleic Acids Res 26, 4791–4796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dyson, F.J. (1999). Origins of life, Rev. ed. (Cambridge England; New York: Cambridge University Press).

    Google Scholar 

  13. Eigen, M., McCaskill, J., and Schuster, P. (1988). Molecular quasi-species. J Phys Chem 92, 6881–6891.

    Article  CAS  Google Scholar 

  14. Eigen, M., and Schuster, P. (1979). The Hypercycle, a Principle of Natural Self-Organization. (Berlin; New York: Springer-Verlag).

    Google Scholar 

  15. Fisher, M.E., and Zuckerman, D.M. (1998). Chemical association via exact thermodynamic formulations. Chem Phys Lett 293, 461–468.

    Article  CAS  Google Scholar 

  16. Ge, H., Qian, M., and Qian, H. (2012). Stochastic theory of nonequilibrium steady states. Part II: applications in chemical biophysics. Phys Rep 510, 87–118.

    CAS  Google Scholar 

  17. Harrison, L.G. (1993). Kinetic Theory of Living Pattern. (Cambridge; New York: Cambridge University Press).

    Google Scholar 

  18. Hopfield, J.J. (1978). Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci USA 75, 4334–4338.

    Article  PubMed  CAS  Google Scholar 

  19. Hopfield, J.J. (1994). Physics, computation, and why biology looks so different. J Theor Biol 171, 53–60.

    Article  Google Scholar 

  20. Huang, S., Li, F., Zhou, J.X., and Qian, H. (2017). Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters. J R Soc Interface 14, 20170097.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jackson, D.A., Symons, R.H., and Berg, P. (1972). Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA 69, 2904–2909.

    Article  PubMed  CAS  Google Scholar 

  22. Kauffman, S.A. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22, 437–467.

    Article  PubMed  CAS  Google Scholar 

  23. Kauffman, S.A. (2011). Approaches to the origin of life on Earth. Life 1, 34–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kirschner, M., and Gerhart, J. (2005). The Plausibility of Life: Resolving Darwin’s Dilemma. (New Haven: Yale University Press).

    Google Scholar 

  25. Kohler, R. (1971). The background to Eduard Buchner’s discovery of cell-free fermentation. J History Biol 4, 35–61.

    Article  CAS  Google Scholar 

  26. Kohler, R.E. (1972). The reception of Eduard Buchner’s discovery of cellfree fermentation. J History Biol 5, 327–353.

    Article  CAS  Google Scholar 

  27. Leopold, P.E., Montal, M., and Onuchic, J.N. (1992). Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA 89, 8721–8725.

    Article  PubMed  CAS  Google Scholar 

  28. Li, H., Helling, R., Tang, C., and Wingreen, N. (1996). Emergence of preferred structures in a simple model of protein folding. Science 273, 666–669.

    Article  PubMed  CAS  Google Scholar 

  29. Miller, S.L. (1953). A production of amino acids under possible primitive earth conditions. Science 117, 528–529.

    Article  PubMed  CAS  Google Scholar 

  30. Miller, S.L., and Urey, H.C. (1959). Organic Compound Synthes on the Primitive Eart: several questions about the origin of life have been answered, but much remains to be studied. Science 130, 245–251.

    Article  PubMed  CAS  Google Scholar 

  31. Monod, J., Wyman, J., and Changeux, J.P. (1965). On the nature of allosteric transitions: a plausible model. J Mol Biol 12, 88–118.

    Article  PubMed  CAS  Google Scholar 

  32. Morowitz, H.J. (1968). Energy Flow in Biology Biological Organization as a Problem in Thermal Physics. (New York: Academic Press).

    Google Scholar 

  33. Noble, D. (2006). The Music of Life: Biology Beyond the Genome. (Oxford; New York: Oxford University Press).

    Google Scholar 

  34. Oparin, A.I. (1953). The Origin of Life, 2d ed. (New York: Dover Publications).

    Google Scholar 

  35. Orgel, L.E. (2004). Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39, 99–123.

    Article  PubMed  CAS  Google Scholar 

  36. Prigogine, I., Nicolis, G., and Babloyantz, A. (1972a). Thermodynamics of evolution. Phys Today 25, 23–28.

    Article  CAS  Google Scholar 

  37. Prigogine, I., Nicolis, G., and Babloyantz, A. (1972b). Thermodynamics of evolution: ideas of nonequilibrium order and of search for stability extend darwins concept back to prebiotic stage by redefining “fittest”. Phys Today 25, 38–44.

    Article  Google Scholar 

  38. Qian, H. (2006). Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations. J Phys Chem B 110, 15063–15074.

    Article  PubMed  CAS  Google Scholar 

  39. Qian, H. (2017). Information and entropic force: physical description of biological cells, chemical reaction kinetics, and information theory (in Chinese). Sci Sin Vitae 47, 257–261.

    Article  Google Scholar 

  40. Qian, H., Ao, P., Tu, Y., and Wang, J. (2016). A framework towards understanding mesoscopic phenomena: emergent unpredictability, symmetry breaking and dynamics across scales. Chem Phys Lett 665, 153–161.

    Article  CAS  Google Scholar 

  41. Rose, S. (2016). How to Get Another Thorax. London Review of Books 38, 15–17.

    Google Scholar 

  42. Saitta, A.M., and Saija, F. (2014). Miller experiments in atomistic computer simulations. Proc Natl Acad Sci USA 111, 13768–13773.

    Article  PubMed  CAS  Google Scholar 

  43. Schrodinger, E. (1945). What is Life? The Physical Aspect of the Living Cell. (Cambridge England; New York: The University press; The Macmillan company).

    Google Scholar 

  44. Smith, E., and Morowitz, H.J. (2016). The origin and nature of life on Earth: the emergence of the fourth geosphere. (Cambridge: Cambridge U. Press), pp. 691.

    Google Scholar 

  45. Thomas, J.M. (2002). The scientific and humane legacy of Max Perutz (1914–2002). Angew Chem Int Ed 41, 3155–3166.

    Article  Google Scholar 

  46. Wachtershauser, G. (1988). Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52, 452–484.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Wächtershäuser, G. (2006). From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc B-Biol Sci 361, 1787–1808.

    Article  CAS  Google Scholar 

  48. Walker, S.I. (2017). Origins of life: a problem for physics, a key issues review. Rep Prog Phys 80, 092601.

    Article  PubMed  CAS  Google Scholar 

  49. Watson, J.D., and Crick, F.H. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Ping Chen of Fudan University for his encouragement to put an earlier idea into writing; Professors Xiaodong Su, Yiqin Gao, Zhirong Liu, and Xinsheng Zhao of Peking University for their inspiring discussions on various related issues. We also thank Garland Allen (Washington Univ. St. Louis), Robert H. Austin (Princeton), Yong Chen (ENS Paris), Hao Li (UCSF), Qi Ouyang (PKU), D. Eric Smith (SFI), Yuhai Tu (IBM), Rutger A. van Santen (TU Eindhoven), Xiang Yu (Inst. Neurosci., CAS), and Cai Zhang (Inst. Biophys., CAS) for reading the manuscript and helpful comments. This work was supported by MST (2003CB715906 to Shunong Bai) and National Natural Science Foundation of China (11021463 to Qi Ouyang).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shunong Bai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Ge, H. & Qian, H. Structure for energy cycle: a unique status of the second law of thermodynamics for living systems. Sci. China Life Sci. 61, 1266–1273 (2018). https://doi.org/10.1007/s11427-018-9362-y

Download citation

Keywords

  • structure
  • energy
  • living systems
  • IMFBC
  • cycle