Skip to main content
Log in

A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protista, Ciliophora)

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Some of the most extreme genome wide rearrangements are found in ciliates, which are unique in possessing both germline micronucleus and somatic macronucleus in every cell/organism. A series of DNA rearrangement events, including DNA elimination, chromosomal fragmentation, gene unscrambling and alternative processing, happen during macronuclear development. To assess the molecular evolution of macronuclear and germline-limited sequences in different cryptic species of Chilodonella uncinata, we characterized the actin, α-tubulin and β-tubulin genes in the micronucleus and macronucleus genomes of USA-SC2 strain and compared them with other strains (i.e. cryptic species). Three main results are: (i) rearrangement patterns between germline and soma are conserved for each gene among the cryptic species of C. uncinata; (ii) in contrast, the germline-limited regions are highly divergent in sequence and length among the cryptic species; (iii) pointer shifting is frequent among the cryptic species. We speculate that pointer sequences may serve as the buffer between the conserved macronuclear destined sequences and rapidly-evolving internal eliminated sequences. The data combined with previous studies demonstrate the plasticity of gene rearrangement among different groups of ciliates and add to the growing data for the role of genome rearrangements in species differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnaiz, O., Mathy, N., Baudry, C., Malinsky, S., Aury, J.M., Denby Wilkes, C., Garnier, O., Labadie, K., Lauderdale, B.E., Le Mouël, A., et al. (2012). The Paramecium germline genome provides a niche for intragenic parasitic DNA: evolutionary dynamics of internal eliminated sequences. PLoS Genet 8, e1002984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J., and Struhl, K. (1993). Current Protocols in Molecular Biology. (New York: Greene-Wiley).

    Google Scholar 

  • Bétermier, M., and Duharcourt, S. (2014). Programmed rearrangement in ciliates: Paramecium. Microbiol Spectrum 2, MDNA3–0035–2014.

    Google Scholar 

  • Chen, T., Yi, Z., Huang, J., and Lin, X. (2015). Evolution of the germline actin gene in hypotrichous ciliates: multiple nonscrambled IESs at extremely conserved locations in two urostylids. J Eukaryot Microbiol 62, 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Bracht, J.R., Goldman, A.D., Dolzhenko, E., Clay, D.M., Swart, E.C., Perlman, D.H., Doak, T.G., Stuart, A., Amemiya, C.T., et al. (2014). The architecture of a scrambled genome reveals massive levels of genomic rearrangement during development. Cell 158, 1187–1198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, X., Jung, S., Beh, L.Y., Eddy, S.R., and Landweber, L.F. (2015). Combinatorial DNA rearrangement facilitates the origin of new genes in ciliates. Genome Biol Evol 7, 2859–2870.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, X., Gao, S., Liu, Y., Wang, Y., Wang, Y., and Song, W. (2016). Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila. Sci China Life Sci 59, 909–919.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Wang, Y., Sheng, Y., Warren, A., and Gao, S. (2018). GPSit: an automated method for evolutionary analysis of nonculturable ciliated microeukaryotes. Mol Ecol Resour 18, 700–713.

    Article  PubMed  Google Scholar 

  • DuBois, M.L., and Prescott, D.M. (1997). Volatility of internal eliminated segments in germ line genes of hypotrichous ciliates. Mol Cell Biol 17, 326–337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, F., Roy, S.W., and Katz, L.A. (2015). Analyses of alternatively processed genes in ciliates provide insights into the origins of scrambled genomes and may provide a mechanism for speciation. MBio 6, e01–998–14.

    Google Scholar 

  • Gao, F., Song, W., and Katz, L.A. (2014). Genome structure drives patterns of gene family evolution in ciliates, a case study using Chilodonella uncinata (protista, ciliophora, phyllopharyngea). Evolution 68, 2287–2295.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, F., Warren, A., Zhang, Q., Gong, J., Miao, M., Sun, P., Xu, D., Huang, J., Yi, Z., and Song, W. (2016). The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep 6, 24874.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, S., Xiong, J., Zhang, C., Berquist, B.R., Yang, R., Zhao, M., Molascon, A.J., Kwiatkowski, S.Y., Yuan, D., Qin, Z., et al. (2013). Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 27, 1662–1679.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldman, A.D., and Landweber, L.F. (2016). What is a genome? PLoS Genet 12, e1006181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gouy, M., Guindon, S., and Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27, 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Guindon, S., and Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.

    Article  PubMed  Google Scholar 

  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.

    CAS  Google Scholar 

  • Hamilton, E.P., Kapusta, A., Huvos, P.E., Bidwell, S.L., Zafar, N., Tang, H., Hadjithomas, M., Krishnakumar, V., Badger, J.H., Caler, E.V., et al. (2016). Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. eLife 5, e19090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan, D.J., Hewitt, E.A., Orr, K.E., Prescott, D.M., and Müller, K.M. (2001). Evolution of IESs and scrambling in the actin I gene in hypotrichous ciliates. Proc Natl Acad Sci USA 98, 15101–15106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jahn, C.L., and Klobutcher, L.A. (2002). Genome remodeling in ciliated protozoa. Annu Rev Microbiol 56, 489–520.

    Article  PubMed  CAS  Google Scholar 

  • Joron, M., Frezal, L., Jones, R.T., Chamberlain, N.L., Lee, S.F., Haag, C.R., Whibley, A., Becuwe, M., Baxter, S.W., Ferguson, L., et al. (2011). Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Juranek, S.A., and Lipps, H.J. (2007). New insights into the macronuclear development in ciliates. Int Rev Cytol 262, 219–251.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L.A., DeBerardinis, J., Hall, M.S., Kovner, A.M., Dunthorn, M., and Muse, S.V. (2011). Heterogeneous rates of molecular evolution among cryptic species of the ciliate morphospecies Chilodonella uncinata. J Mol Evol 73, 266–272.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L.A., and Kovner, A.M. (2010). Alternative processing of scrambled genes generates protein diversity in the ciliate Chilodonella uncinata. J Exp Zool 314B, 480–488.

    Article  CAS  Google Scholar 

  • Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  PubMed  CAS  Google Scholar 

  • Möllenbeck, M., Cavalcanti, A.R.O., Jönsson, F., Lipps, H.J., and Landweber, L.F. (2006). Interconversion of germline-limited and somatic DNA in a scrambled gene. J Mol Evol 63, 69–73.

    Article  PubMed  CAS  Google Scholar 

  • Müller, F., and Tobler, H. (2000). Chromatin diminution in the parasitic nematodes Ascaris suum and Parascaris univalens. Int J Parasitol 30, 391–399.

    Article  PubMed  Google Scholar 

  • Maurer-Alcalá, X.X., Knight, R., and Katz, L.A. (2018). Exploration of the germline genome of the ciliate Chilodonella uncinata through singlecell omics (transcriptomics and genomics). MBio 9, e01836–01817.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrath, C., Zufall, R., and Katz, L.A. (2006). Ciliate genome evolution. In: Genomics and Evolution in Microbial Eukaryotes, D., Bhattacharya, and L.A., Katz, eds. (New York: Oxford University Press), pp. 64–77.

    Google Scholar 

  • Noto, T., and Mochizuki, K. (2017). Whats, hows and whys of programmed DNA elimination in Tetrahymena. Open Biol 7, 170172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowacki, M., Shetty, K., and Landweber, L.F. (2011). RNA-mediated epigenetic programming of genome rearrangements. Annu Rev Genom Hum Genet 12, 367–389.

    Article  CAS  Google Scholar 

  • Nowacki, M., Vijayan, V., Zhou, Y., Schotanus, K., Doak, T.G., and Landweber, L.F. (2008). RNA-mediated epigenetic programming of a genome- rearrangement pathway. Nature 451, 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Parfrey, L.W., Lahr, D.J.G., and Katz, L.A. (2008). The dynamic nature of eukaryotic genomes. Mol Biol Evol 25, 787–794.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, D.M. (1994). The DNA of ciliated protozoa. Microbiol Rev 58, 233–267.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prescott, D.M. (2000). Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet 1, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Ricard, G., de Graaf, R.M., Dutilh, B.E., Duarte, I., van Alen, T.A., van Hoek, A.H., Boxma, B., van der Staay, G.W.M., Moon-van der Staay, S. Y., Chang, W.J., et al. (2008). Macronuclear genome structure of the ciliate Nyctotherus ovalis: single-gene chromosomes and tiny introns. BMC Genomics 9, 587–601.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riley, J.L., and Katz, L.A. (2001). Widespread distribution of extensive chromosomal fragmentation in ciliates. Mol Biol Evol 18, 1372–1377.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T., and Katz, L.A. (2007). Non-mendelian inheritance of paralogs of 2 cytoskeletal genes in the ciliate Chilodonella uncinata. Mol Biol Evol 24, 2495–2503.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, C., Swiderski, M.R., Barry, J.D., and McCulloch, R. (2008). Antigenic variation in Trypanosoma brucei: joining the DOTs. PLoS Biol 6, e185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swart, E.C., Bracht, J.R., Magrini, V., Minx, P., Chen, X., Zhou, Y., Khurana, J.S., Goldman, A.D., Nowacki, M., Schotanus, K., et al. (2013). The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes. PLoS Biol 11, e1001473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, C., Zhang, T., Wang, Y., Katz, L.A., Gao, F., and Song, W. (2017). Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc R Soc B 284, 20170425.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang, P., Wang, Y., Wang, C., Zhang, T., Al-Farraj, S.A., and Gao, F. (2017). Further consideration on the phylogeny of the Ciliophora: analyses using both mitochondrial and nuclear data with focus on the extremely confused class Phyllopharyngea. Mol Phylogenet Evol 112, 96–106.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Wang, Y., Sheng, Y., Huang, J., Chen, X., Al-Rasheid, K.A.S., and Gao, S. (2017). A comparative study of genome organization and epigenetic mechanisms in model ciliates, with an emphasis on Tetrahymena, Paramecium and Oxytricha. Eur J Protistol 61, 376–387.

    Article  PubMed  Google Scholar 

  • Wang, Y., Chen, X., Sheng, Y., Liu, Y., and Gao, S. (2017a). N6-adenine DNA methylation is associated with the linker DNA of H2A.Z-containing well-positioned nucleosomes in Pol II-transcribed genes in Tetrahymena. Nucleic Acids Res 45, 11594–11606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Y., Sheng, Y., Liu, Y., Pan, B., Huang, J., Warren, A., and Gao, S. (2017b). N6-methyladenine DNA modification in the unicellular eukaryotic organism Tetrahymena thermophila. Eur J Protistol 58, 94–102.

    Article  PubMed  Google Scholar 

  • Xiong, K., and Blainey, P.C. (2016). Molecular sled sequences are common in mammalian proteins. Nucleic Acids Res 44, 2266–2273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao, M.C., Duharcourt, S., and Chalker, D.L. (2002). Genome-wide rearrangements of DNA in ciliates. In: Mobile DNA II, N., Craig, R., Craigie, M., Gellert, A., and Lambowitz, eds. (New York: Academic Press), pp. 730–758.

  • Yerlici, V.T., and Landweber, L.F. (2014). Programmed genome rearrangements in the ciliate Oxytricha. Microbiol Spectrum 2, MDNA3–2014.

    Google Scholar 

  • Yi, Z., Huang, L., Yang, R., Lin, X., and Song, W. (2016). Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events. Mol Phylogenet Evol 96, 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X., Wang, Y., Wang, Y., Liu, Y., and Gao, S. (2017). Histone methyltransferase TXR1 is required for both H3 and H3.3 lysine 27 methylation in the well-known ciliated protist Tetrahymena thermophila. Sci China Life Sci 60, 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Zufall, R.A., Robinson, T., and Katz, L.A. (2005). Evolution of developmentally regulated genome rearrangements in eukaryotes. J Exp Zool 304B, 448–455.

    Article  CAS  Google Scholar 

  • Zufall, R.A., Sturm, M., and Mahon, B.C. (2012). Evolution of germlinelimited sequences in two populations of the ciliate Chilodonella uncinata. J Mol Evol 74, 140–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Weibo Song (OUC) for his kind help in preparing the draft and illustrations. This work was supported by the Natural Science Foundation of China (31772428), Young Elite Scientists Sponsorship Program by CAST (2017QNRC001), Fundamental Research Funds for the Central Universities (201841013) to Feng Gao, and the AREA award from the National Institutes of Health (1R15GM113177–01) to Laura A. Katz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, C., Katz, L.A. et al. A paradox: rapid evolution rates of germline-limited sequences are associated with conserved patterns of rearrangements in cryptic species of Chilodonella uncinata (Protista, Ciliophora). Sci. China Life Sci. 61, 1071–1078 (2018). https://doi.org/10.1007/s11427-018-9333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9333-1

Keywords

Navigation