Skip to main content
Log in

The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs regulate diverse biological processes such as development and aging by promoting degradation or inhibiting translation of their target mRNAs. In this study, we have found that the miR-58 family microRNAs regulate lifespan in C. elegans. Intriguingly, members of the miR-58 family affect lifespan differently, sometimes in opposite directions, and have complex genetic interactions. The abundances of the miR-58 family miRNAs are up-regulated in the long-lived daf-2 mutant in a daf-16-dependent manner, indicating that these miRNAs are effectors of insulin signaling in C. elegans. We also found that miR-58 is regulated by insulin signaling and partially required for the lifespan extension mediated by reduced insulin signaling, germline ablation, dietary restriction, and mild mitochondrial dysfunction. We further identified the daf-21, ins-1, and isw-1 mRNAs as endogenous targets of miR-58. Our study shows that miRNAs function in multiple lifespan extension mechanisms, and that the seed sequence is not the dominant factor defining the role of a miRNA in lifespan regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Saavedra, E., and Horvitz, H.R. (2010). Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20, 367–373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D.P. (2004). microRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  • Boehm, M., and Slack, F. (2005). A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954–1957.

    Article  PubMed  CAS  Google Scholar 

  • Boulias, K., and Horvitz, H.R. (2012). The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15, 439–450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Brennecke, J., Stark, A., Russell, R.B., and Cohen, S.M. (2005). Principles of microRNA-target recognition. PLoS Biol 3, e85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Xu, N.L., Mahuvakar, V.R., Andersen, M.R., et al. (2005). Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33, e179–e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, X., Guo, X., Zhang, H., Xiang, Y., Chen, J., Yin, Y., Cai, X., Wang, K., Wang, G., Ba, Y., et al. (2009). Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385–1392.

    Article  PubMed  CAS  Google Scholar 

  • Clapé, C., Fritz, V., Henriquet, C., Apparailly, F., Fernandez, P.L., Iborra, F., Avancès, C., Villalba, M., Culine, S., and Fajas, L. (2009). miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS ONE 4, e7542.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Lucas, M.P., Sáez, A.G., and Lozano, E. (2015). miR-58 family and TGF-β pathways regulate each other in Caenorhabditis elegans. Nucleic Acids Res 126, gkv923.

    Google Scholar 

  • Dillin, A., Crawford, D.K., and Kenyon, C. (2002a). Timing requirements for insulin/IGF-1 signaling in C. elegans. Science 298, 830–834.

    Article  PubMed  CAS  Google Scholar 

  • Dillin, A., Hsu, A.L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A.G., Kamath, R.S., Ahringer, J., and Kenyon, C. (2002b). Rates of behavior and aging specified by mitochondrial function during development. Science 298, 2398–2401.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Bussière, F., and Hekimi, S. (2001). Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1, 633–644.

    Article  PubMed  CAS  Google Scholar 

  • Forman, J.J., Legesse-Miller, A., and Coller, H.A. (2008). A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc Natl Acad Sci USA 105, 14879–14884.

    Article  PubMed  Google Scholar 

  • Friedländer, M.R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., and Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26, 407–415.

    Article  PubMed  CAS  Google Scholar 

  • Gems, D., Sutton, A.J., Sundermeyer, M.L., Albert, P.S., King, K.V., Edgley, M.L., Larsen, P.L., and Riddle, D.L. (1998). Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150, 129–155.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ha, I., Wightman, B., and Ruvkun, G. (1996). A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10, 3041–3050.

    Article  PubMed  CAS  Google Scholar 

  • Helwak, A., Kudla, G., Dudnakova, T., and Tollervey, D. (2013). Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654–665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hsin, H., and Kenyon, C. (1999). Signals from the reproductive system regulate the lifespan of C. elegans. Nature 399, 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Ibáñez-Ventoso, C., Yang, M., Guo, S., Robins, H., Padgett, R.W., and Driscoll, M. (2006). Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 5, 235–246.

    Article  PubMed  CAS  Google Scholar 

  • Jan, C.H., Friedman, R.C., Ruby, J.G., and Bartel, D.P. (2011). Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs. Nature 469, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic, M., Reiter, L., Picotti, P., Lange, V., Bogan, E., Hurschler, B.A., Blenkiron, C., Lehrbach, N.J., Ding, X.C., Weiss, M., et al. (2010). A quantitative targeted proteomics approach to validate predicted micro-RNA targets in C. elegans. Nat Methods 7, 837–842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jovanovic, M., Reiter, L., Clark, A., Weiss, M., Picotti, P., Rehrauer, H., Frei, A., Neukomm, L.J., Kaufman, E., Wollscheid, B., et al. (2012). RIP-chip-SRM—a new combinatorial large-scale approach identifies a set of translationally regulated bantam/miR-58 targets in C. elegans. Genome Res 22, 1360–1371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaeberlein, T.L., Smith, E.D., Tsuchiya, M., Welton, K.L., Thomas, J.H., Fields, S., Kennedy, B.K., and Kaeberlein, M. (2006). Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., de Lencastre, A., Pincus, Z., and Slack, F.J. (2009). Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10, R54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kato, M., Chen, X., Inukai, S., Zhao, H., and Slack, F.J. (2011). Ageassociated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17, 1804–1820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946.

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman, W.P., and Plasterk, R.H.A. (2006). The diverse functions of microRNAs in animal development and disease. Dev Cell 11, 441–450.

    Article  PubMed  CAS  Google Scholar 

  • Lai, E.C. (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363–364.

    Article  PubMed  CAS  Google Scholar 

  • Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G.D., Wilson, M.A., Zhu, M., Wolkow, C.A., de Cabo, R., Ingram, D. K., and Zou, S. (2006). Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5, 515–524.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.Y.N., Hench, J., and Ruvkun, G. (2001). Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 11, 1950–1957.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.S., Lee, R.Y.N., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33, 40–48.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, B.P., Burge, C.B., and Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Lin, K., Dorman, J.B., Rodan, A., and Kenyon, C. (1997). daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322.

    Article  PubMed  CAS  Google Scholar 

  • Love, D.C., Ghosh, S., Mondoux, M.A., Fukushige, T., Wang, P., Wilson, M.A., Iser, W.B., Wolkow, C.A., Krause, M.W., and Hanover, J.A. (2010). Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity. Proc Natl Acad Sci USA 107, 7413–7418.

    Article  PubMed  Google Scholar 

  • Lozano, E., de Lucas, M.P., and Sáez, A.G. (2016). sta-1 is repressed by mir-58 family in Caenorhabditis elegans. Worm 5, e1238560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucanic, M., Graham, J., Scott, G., Bhaumik, D., Benz, C.C., Hubbard, A., Lithgow, G.J., and Melov, S. (2013). Age-related micro-RNA abundance in individual C. elegans. Aging 5, 394–411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mallo, G.V., Kurz, C.L., Couillault, C., Pujol, N., Granjeaud, S., Kohara, Y., and Ewbank, J.J. (2002). Inducible antibacterial defense system in C. elegans. Curr Biol 12, 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  • Matilainen, O., Sleiman, M.S.B., Quiros, P.M., Garcia, S.M.D.A., and Auwerx, J. (2017). The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nat Commun 8, 1818.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A. B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3, e215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morley, J.F., and Morimoto, R.I. (2004). Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15, 657–664.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H. A., and Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999.

    Article  PubMed  CAS  Google Scholar 

  • Pagano, D.J., Kingston, E.R., and Kim, D.H. (2015). Tissue expression pattern of PMK-2 p38 MAPK is established by the miR-58 family in C. elegans. PLoS Genet 11, e1004997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagliuca, A., Valvo, C., Fabrizi, E., di Martino, S., Biffoni, M., Runci, D., Forte, S., De Maria, R., and Ricci-Vitiani, L. (2013). Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression. Oncogene 32, 4806–4813.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, S., and Ruvkun, G. (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12, 2488–2498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pierce, S.B., Costa, M., Wisotzkey, R., Devadhar, S., Homburger, S.A., Buchman, A.R., Ferguson, K.C., Heller, J., Platt, D.M., Pasquinelli, A. A., et al. (2001). Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15, 672–686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piñero González, J., Carrillo Farnés, O., Vasconcelos, A.T.R., and González Pérez, A. (2009). Conservation of key members in the course of the evolution of the insulin signaling pathway. Biosystems 95, 7–16.

    Article  PubMed  CAS  Google Scholar 

  • Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L.L., Wang, Y., and Wang, D.Y. (2007). Involvement of genes required for synaptic function in aging control in C. elegans. Neurosci Bull 23, 21–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen, Y., Wollam, J., Magner, D., Karalay, O., and Antebi, A. (2012). A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338, 1472–1476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherrard, R., Luehr, S., Holzkamp, H., McJunkin, K., Memar, N., and Conradt, B. (2017). miRNAs cooperate in apoptosis regulation during C. elegans development. Genes Dev 31, 209–222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Subasic, D., Brümmer, A., Wu, Y., Pinto, S.M., Imig, J., Keller, M., Jovanovic, M., Lightfoot, H.L., Nasso, S., Goetze, S., et al. (2015). Cooperative target mRNA destabilization and translation inhibition by miR-58 microRNA family in C. elegans. Genome Res 25, 1680–1691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ventura, N., Rea, S.L., Schiavi, A., Torgovnick, A., Testi, R., and Johnson, T.E. (2009). p53/CEP-1 increases or decreases lifespan, depending on level of mitochondrial bioenergetic stress. Aging Cell 8, 380–393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vora, M., Shah, M., Ostafi, S., Onken, B., Xue, J., Ni, J.Z., Gu, S., and Driscoll, M. (2013). Deletion of microRNA-80 activates dietary restriction to extend C. elegans healthspan and lifespan. PLoS Genet 9, e1003737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, D., Hou, L., Nakamura, S., Su, M., Li, F., Chen, W., Yan, Y., Green, C.D., Chen, D., Zhang, H., et al. (2017). LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 16, 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Warf, M.B., Johnson, W.E., and Bass, B.L. (2011). Improved annotation of C. elegans microRNAs by deep sequencing reveals structures associated with processing by Drosha and Dicer. RNA 17, 563–577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, H., Artiles, K.L., and Fire, A.Z. (2015). Functional relevance of “seed” and “non-seed” sequences in microRNA-mediated promotion of C. elegans developmental progression. RNA 21, 1980–1992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, X., Duan, X., Qian, J., and Li, F. (2009). Abundant conserved microRNA target sites in the 5′-untranslated region and coding sequence. Genetica 137, 159–164.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center (CGC), which is supported by the NIH Office of Infrastructure Programs (P40 OD010440), for providing worm strains. We also thank Dr. Li-Lin Du for critical reading of the manuscript. This work was supported by Beijing Municipal Science and Technology Commission (a fund for cultivation and development of innovation base) and the Ministry of Science and Technology of China (2014CB84980001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengqiu Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, W. & Dong, M. The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. Sci. China Life Sci. 61, 1060–1070 (2018). https://doi.org/10.1007/s11427-018-9308-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9308-8

Keywords

Navigation