Advertisement

Science China Life Sciences

, Volume 61, Issue 5, pp 515–522 | Cite as

Recruitment and reinforcement: maintaining epigenetic silencing

  • Chengzhi Wang
  • Bing Zhu
  • Jun Xiong
Review

Abstract

Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant “epigenetic” system to achieve this functionality. “Epigenetics” is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.

Keywords

heterochromatin heterochromatin maintenance polycomb H3K27me3 H3K9me2/3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31761163001, 31701128).

References

  1. Alabert, C., Barth, T.K., Reverón-Gómez, N., Sidoli, S., Schmidt, A., Jensen, O.N., Imhof, A., and Groth, A. (2015). Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29, 585–590.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almeida, M., Pintacuda, G., Masui, O., Koseki, Y., Gdula, M., Cerase, A., Brown, D., Mould, A., Innocent, C., Nakayama, M., et al. (2017). PCGF3/ 5-PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science 356, 1081–1084.PubMedCrossRefGoogle Scholar
  3. Almouzni, G., and Cedar, H. (2016). Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8, a019372.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aravin, A.A., Hannon, G.J., and Brennecke, J. (2007). The piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764.PubMedCrossRefGoogle Scholar
  5. Audergon, P.N., Catania, S., Kagansky, A., Tong, P., Shukla, M., Pidoux, A. L., and Allshire, R.C. (2015). Epigenetics. Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135.PubMedGoogle Scholar
  6. Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124.PubMedCrossRefGoogle Scholar
  7. Bashtrykov, P., Jankevicius, G., Smarandache, A., Jurkowska, R.Z., Ragozin, S., and Jeltsch, A. (2012). Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol 19, 572–578.PubMedCrossRefGoogle Scholar
  8. Bintu, L., Yong, J., Antebi, Y.E., McCue, K., Kazuki, Y., Uno, N., Oshimura, M., and Elowitz, M.B. (2016). Dynamics of epigenetic regulation at the single-cell level. Science 351, 720–724.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brockdorff, N. (2017). Polycomb complexes in X chromosome inactivation. Phil Trans R Soc B 372, 20170021.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Brown, S.W. (1966). Heterochromatin. Science 151, 417–425.PubMedCrossRefGoogle Scholar
  11. Busturia, A., Wightman, C.D., and Sakonju, S. (1997). A silencer is required for maintenance of transcriptional repression throughout Drosophila development. Development 124, 4343–4350.PubMedGoogle Scholar
  12. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 Lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.PubMedCrossRefGoogle Scholar
  13. Castel, S.E., and Martienssen, R.A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat Rev Genet 14, 100–112.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chan, C.S., Rastelli, L., and Pirrotta, V. (1994). A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J 13, 2553–2564.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen, T., Ueda, Y., Dodge, J.E., Wang, Z., and Li, E. (2003). Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23, 5594–5605.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen, J., and Xue, Y. (2016). Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59, 227–235.PubMedCrossRefGoogle Scholar
  17. Chestier, A., and Yaniv, M. (1979). Rapid turnover of acetyl groups in the four core histones of simian virus 40 minichromosomes. Proc Natl Acad Sci USA 76, 46–50.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Christen, B., and Bienz, M. (1994). Imaginal disc silencers from Ultrabithorax: evidence for Polycomb response elements. Mech Dev 48, 255–266.PubMedCrossRefGoogle Scholar
  19. Coleman, R.T., and Struhl, G. (2017). Causal role for inheritance of H3-K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356, eaai8236.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cooper, S., Grijzenhout, A., Underwood, E., Ancelin, K., Zhang, T., Nesterova, T.B., Anil-Kirmizitas, B., Bassett, A., Kooistra, S.M., Agger, K., et al. (2016). Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun 7, 13661.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196.PubMedCrossRefGoogle Scholar
  22. da Rocha, S.T., Boeva, V., Escamilla-Del-Arenal, M., Ancelin, K., Granier, C., Matias, N.R., Sanulli, S., Chow, J., Schulz, E., Picard, C., et al. (2014). Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell 53, 301–316.PubMedCrossRefGoogle Scholar
  23. Davidovich, C., Wang, X., Cifuentes-Rojas, C., Goodrich, K.J., Gooding, A.R., Lee, J.T., and Cech, T.R. (2015). Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 57, 552–558.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Davidovich, C., Zheng, L., Goodrich, K.J., and Cech, T.R. (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20, 1250–1257.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Djupedal, I., and Ekwall, K. (2009). Epigenetics: heterochromatin meets RNAi. Cell Res 19, 282–295.PubMedCrossRefGoogle Scholar
  26. Elgin, S.C. (1996). Heterochromatin and gene regulation in Drosophila. Curr Opin Genet Dev 6, 193–202.PubMedCrossRefGoogle Scholar
  27. Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15, 1176–1183.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Filion, G.J., and van Steensel, B. (2010). Reassessing the abundance of H3K9me2 chromatin domains in embryonic stem cells. Nat Genet 42, 4–4. (b)author reply 5-6.PubMedCrossRefGoogle Scholar
  29. Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., and Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10, 1291–1300.PubMedCrossRefGoogle Scholar
  30. Hansen, K., and Helin, K. (2009). Epigenetic inheritance through selfrecruitment of the polycomb repressive complex 2. Epigenetics 4, 133–138.PubMedCrossRefGoogle Scholar
  31. Henikoff, S., and Shilatifard, A. (2011). Histone modification: cause or cog? Trends Genet 27, 389–396.PubMedCrossRefGoogle Scholar
  32. Holoch, D., and Moazed, D. (2015). RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet 16, 71–84.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Honda, S., and Selker, E.U. (2008). Direct interaction between DNA methyltransferase DIM-2 and HP1 Is required for DNA methylation in Neurospora crassa. Mol Cell Biol 28, 6044–6055.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Huang, C., Xu, M., and Zhu, B. (2013). Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional states without the precise restoration of marks? Philos Trans R Soc London B, Biol Sci 368, 20110332.CrossRefGoogle Scholar
  35. Jackson, V., Shires, A., Chalkley, R., and Granner, D.K. (1975). Studies on highly metabolically active acetylation and phosphorylation of histones. J Biol Chem 250, 4856–4863.PubMedGoogle Scholar
  36. Jih, G., Iglesias, N., Currie, M.A., Bhanu, N.V., Paulo, J.A., Gygi, S.P., Garcia, B.A., and Moazed, D. (2017). Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Nature 547, 463–467.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Johnson, W.L., Yewdell, W.T., Bell, J.C., McNulty, S.M., Duda, Z., O’Neill, R.J., Sullivan, B.A., and Straight, A.F. (2017). RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6, e25299.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Justin, N., Zhang, Y., Tarricone, C., Martin, S.R., Chen, S., Underwood, E., De Marco, V., Haire, L.F., Walker, P.A., Reinberg, D., et al. (2016). Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat Commun 7, 11316.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kalb, R., Latwiel, S., Baymaz, H.I., Jansen, P.W., Muller, C.W., Vermeulen, M., and Muller, J. (2014). Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat Struct Mol Biol 21, 569–571.PubMedCrossRefGoogle Scholar
  40. Kaneko, S., Son, J., Shen, S.S., Reinberg, D., and Bonasio, R. (2013). PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol 20, 1258–1264.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Karlic, R., Chung, H.R., Lasserre, J., Vlahovicek, K., and Vingron, M. (2010). Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107, 2926–2931.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kohlmaier, A., Savarese, F., Lachner, M., Martens, J., Jenuwein, T., and Wutz, A. (2004). A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2, e171.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kowluru, R.A., and Mishra, M. (2015). Contribution of epigenetics in diabetic retinopathy. Sci China Life Sci 58, 556–563.PubMedCrossRefGoogle Scholar
  44. Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., and Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120.PubMedCrossRefGoogle Scholar
  45. Laprell, F., Finkl, K., and Müller, J. (2017). Propagation of Polycombrepressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88.PubMedCrossRefGoogle Scholar
  46. Law, J.A., and Jacobsen, S.E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11, 204–220.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Lehnertz, B., Ueda, Y., Derijck, A.A.H.A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., Chen, T., Li, E., Jenuwein, T., and Peters, A.H.F. M. (2003). Suv39h-mediated histone H3 Lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13, 1192–1200.PubMedCrossRefGoogle Scholar
  48. Li, G., and Reinberg, D. (2011). Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21, 175–186.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Liang, G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., and Jones, P.A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22, 480–491.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lienert, F., Mohn, F., Tiwari, V.K., Baubec, T., Roloff, T.C., Gaidatzis, D., Stadler, M.B., and Schübeler, D. (2011). Genomic prevalence of heterochromatic H3K9me2 and transcription do not discriminate pluripotent from terminally differentiated cells. PLoS Genet 7, e1002090.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu, N., Zhang, Z., Wu, H., Jiang, Y., Meng, L., Xiong, J., Zhao, Z., Zhou, X., Li, J., Li, H., et al. (2015). Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29, 379–393.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260.PubMedCrossRefGoogle Scholar
  53. Maenner, S., Blaud, M., Fouillen, L., Savoye, A., Marchand, V., Dubois, A., Sanglier-Cianférani, S., Van Dorsselaer, A., Clerc, P., Avner, P., et al. (2010). 2-D structure of the a region of Xist RNA and its implication for PRC2 association. PLoS Biol 8, e1000276.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Mak, W., Baxter, J., Silva, J., Newall, A.E., Otte, A.P., and Brockdorff, N. (2002). Mitotically stable association of polycomb group proteins Eed and Enx1 with the inactive X chromosome in trophoblast stem cells. Curr Biol 12, 1016–1020.PubMedCrossRefGoogle Scholar
  55. Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury III, W.J., Voigt, P., Martin, S.R., Taylor, W.R., de Marco, V., et al. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Martienssen, R., and Moazed, D. (2015). RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7, a019323.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Müller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O’Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208.PubMedCrossRefGoogle Scholar
  58. Müller, J., and Kassis, J.A. (2006). Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev 16, 476–484.PubMedCrossRefGoogle Scholar
  59. Nakai, N., Otsuka, S., Myung, J., and Takumi, T. (2015). Autism spectrum disorder model mice: focus on copy number variation and epigenetics. Sci China Life Sci 58, 976–984.PubMedCrossRefGoogle Scholar
  60. Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I.S. (2001). Role of histone H3 Lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113.PubMedCrossRefGoogle Scholar
  61. Okamoto, I., Otte, A.P., Allis, C.D., Reinberg, D., and Heard, E. (2004). Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649.PubMedCrossRefGoogle Scholar
  62. Onodera, Y., Haag, J.R., Ream, T., Costa Nunes, P., Pontes, O., and Pikaard, C.S. (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120, 613–622.PubMedCrossRefGoogle Scholar
  63. Pandey, R.R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., Nagano, T., Mancini-Dinardo, D., and Kanduri, C. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32, 232–246.PubMedCrossRefGoogle Scholar
  64. Pengelly, A.R., Copur, Ö., Jäckle, H., Herzig, A., and Müller, J. (2013). A histone mutant reproduces the phenotype caused by loss of histonemodifying factor Polycomb. Science 339, 698–699.PubMedCrossRefGoogle Scholar
  65. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S., and Brockdorff, N. (1996). Requirement for Xist in X chromosome inactivation. Nature 379, 131–137.PubMedCrossRefGoogle Scholar
  66. Pintacuda, G., Wei, G., Roustan, C., Kirmizitas, B.A., Solcan, N., Cerase, A., Castello, A., Mohammed, S., Moindrot, B., Nesterova, T.B., et al. (2017). hnRNPK recruits PCGF3/5-PRC1 to the Xist RNA B-repeat to establish Polycomb-mediated chromosomal silencing. Mol Cell 68, 955–969.e10.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A., and Panning, B. (2002). Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36, 233–278.PubMedCrossRefGoogle Scholar
  68. Plath, K., Fang, J., Mlynarczyk-Evans, S.K., Cao, R., Worringer, K.A., Wang, H., de la Cruz, C.C., Otte, A.P., Panning, B., and Zhang, Y. (2003). Role of histone H3 Lysine 27 methylation in X inactivation. Science 300, 131–135.PubMedCrossRefGoogle Scholar
  69. Probst, A.V., Dunleavy, E., and Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10, 192–206.PubMedCrossRefGoogle Scholar
  70. Ragunathan, K., Jih, G., and Moazed, D. (2015). Epigenetics. Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699.PubMedGoogle Scholar
  71. Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.PubMedCrossRefGoogle Scholar
  72. Richards, E.J., and Elgin, S.C.R. (2002). Epigenetic codes for heterochromatin formation and silencing. Cell 108, 489–500.PubMedCrossRefGoogle Scholar
  73. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S. A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rountree, M.R., and Selker, E.U. (2010). DNA methylation and the formation of heterochromatin in Neurospora crassa. Heredity 105, 38–44.PubMedCrossRefGoogle Scholar
  75. Sadaie, M., Iida, T., Urano, T., and Nakayama, J.I. (2004). A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J 23, 3825–3835.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Saksouk, N., Barth, T.K., Ziegler-Birling, C., Olova, N., Nowak, A., Rey, E., Mateos-Langerak, J., Urbach, S., Reik, W., Torres-Padilla, M.E., et al. (2014). Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 56, 580–594.PubMedCrossRefGoogle Scholar
  77. Schalch, T., Job, G., Noffsinger, V.J., Shanker, S., Kuscu, C., Joshua-Tor, L., and Partridge, J.F. (2009). High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol Cell 34, 36–46.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Scharf, A.N.D., Barth, T.K., and Imhof, A. (2009). Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37, 5032–5040.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R., and Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21, 1121–1131.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Schuettengruber, B., Bourbon, H.M., Di Croce, L., and Cavalli, G. (2017). Genome regulation by Polycomb and trithorax: 70 years and counting. Cell 171, 34–57.PubMedCrossRefGoogle Scholar
  81. Sengupta, A.K., Kuhrs, A., and Müller, J. (2004). General transcriptional silencing by a Polycomb response element in Drosophila. Development 131, 1959–1965.PubMedCrossRefGoogle Scholar
  82. Shipony, Z., Mukamel, Z., Cohen, N.M., Landan, G., Chomsky, E., Zeliger, S.R., Fried, Y.C., Ainbinder, E., Friedman, N., and Tanay, A. (2014). Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513, 115–119.PubMedCrossRefGoogle Scholar
  83. Shirai, A., Kawaguchi, T., Shimojo, H., Muramatsu, D., Ishida-Yonetani, M., Nishimura, Y., Kimura, H., Nakayama, J.I., and Shinkai, Y. (2017). Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6, e25317.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Silva, J., Mak, W., Zvetkova, I., Appanah, R., Nesterova, T.B., Webster, Z., Peters, A.H.F.M., Jenuwein, T., Otte, A.P., and Brockdorff, N. (2003). Establishment of histone H3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 Polycomb group complexes. Dev Cell 4, 481–495.PubMedCrossRefGoogle Scholar
  85. Simon, J., Chiang, A., Bender, W., Shimell, M.J., and O’Connor, M. (1993). Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products. Dev Biol 158, 131–144.PubMedCrossRefGoogle Scholar
  86. Song, J., Rechkoblit, O., Bestor, T.H., and Patel, D.J. (2011). Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science 331, 1036–1040.PubMedCrossRefGoogle Scholar
  87. Song, J., Teplova, M., Ishibe-Murakami, S., and Patel, D.J. (2012). Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335, 709–712.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Stancheva, I. (2005). Caught in conspiracy: cooperation between DNA methylation and histone H3K9 methylation in the establishment and maintenance of heterochromatin. Biochem Cell Biol 83, 385–395.PubMedCrossRefGoogle Scholar
  89. Steffen, P.A., and Ringrose, L. (2014). What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15, 340–356.PubMedCrossRefGoogle Scholar
  90. Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A., and Tajima, S. (2011). Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci USA 108, 9055–9059.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Tamaru, H., and Selker, E.U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283.PubMedCrossRefGoogle Scholar
  92. Trojer, P., and Reinberg, D. (2007). Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28, 1–13.PubMedCrossRefGoogle Scholar
  93. Velazquez Camacho, O., Galan, C., Swist-Rosowska, K., Ching, R., Gamalinda, M., Karabiber, F., De La Rosa-Velazquez, I., Engist, B., Koschorz, B., Shukeir, N., et al. (2017). Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6, e25293.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I.S., and Moazed, D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wang, C.Z., and Zhu, B. (2015). You are never alone: crosstalk among epigenetic players. Sci Bull 60, 899–904.CrossRefGoogle Scholar
  96. Wang, X., Goodrich, K.J., Gooding, A.R., Naeem, H., Archer, S., Paucek, R.D., Youmans, D.T., Cech, T.R., and Davidovich, C. (2017). Targeting of Polycomb repressive complex 2 to RNA by short repeats of consecutive guanines. Mol Cell 65, 1056–1067.e5.PubMedCrossRefGoogle Scholar
  97. Wang, X., and Moazed, D. (2017). DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356, 88–91.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wassenegger, M. (2005). The role of the RNAi machinery in heterochromatin formation. Cell 122, 13–16.PubMedCrossRefGoogle Scholar
  99. Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A., and Feinberg, A.P. (2009). Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41, 246–250.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Wutz, A., Rasmussen, T.P., and Jaenisch, R. (2002). Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat Genet 30, 167–174.PubMedCrossRefGoogle Scholar
  101. Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98.PubMedCrossRefGoogle Scholar
  102. Xu, M., Wang, W., Chen, S., and Zhu, B. (2011). A model for mitotic inheritance of histone lysine methylation. EMBO Rep 13, 60–67.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zaidi, S.K., Young, D.W., Montecino, M., van Wijnen, A.J., Stein, J.L., Lian, J.B., and Stein, G.S. (2011). Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 286, 18355–18361.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., and Garcia, B. A. (2010). In vivo residue-specific histone methylation dynamics. J Biol Chem 285, 3341–3350.PubMedCrossRefGoogle Scholar
  105. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., and Lee, J.T. (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhu, B., and Reinberg, D. (2011). Epigenetic inheritance: uncontested? Cell Res 21, 435–441.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zocco, M., Marasovic, M., Pisacane, P., Bilokapic, S., and Halic, M. (2016). The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin. Cell Discov 2, 16004.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations